Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Arizona Astronomer Helps Discover New Supernova Type

25.05.2010
The finding sheds light on some universal mysteries, including the possibility that exploding stars created some of the matter that makes up our bodies.

Not all explosions are created equal – it's as true for film effects as it is for stars. An international team of scientists, including a University of Arizona astronomer, has identified a third type of exploding star, or supernova.

Until now, scientists had only observed two kinds of supernovae – either hot, young giants that go out in a violent display as they collapse under their own weight, or old, dense white dwarves that blow up in a thermonuclear explosion. The new supernova appeared in telescope images in January 2005. Seeing that it had recently begun the process of exploding, scientists started collecting and combining data from different telescope sites around the world, measuring both the amount of material thrown off in the explosion and its chemical makeup. The team, led by principal investigator Avishay Gal-Yam at the Weizmann Institute of Science in Rehovot, Israel, soon found that the new supernova did not fit either of the known patterns.

"Such events were predicted but never observed until now," said team member David Arnett, a Regents' Professor of Astronomy at the University of Arizona’s Steward Observatory. A senior theorist on the paper, Arnett performed calculations that explained the puzzling distributions of chemical elements in the supernova remnant, the "smoking gun" of the stellar explosion. The findings appeared in the May 20 issue of the journal Nature.

Working like detectives on a crime scene of cosmic proportions, the team deciphered the evidence and reconstructed the events leading to the star's demise. By analyzing the spectral pattern of light coming from the supernova, they sifted through the thermonuclear ashes to infer the conditions under which the explosion unfolded, even to the point of identifying the progenitor as a helium-rich white dwarf that detonated.

On one hand, the amount of material hurled out from the supernova was too small for it to have come from an exploding giant. In addition, its location, distant from the busy hubs where new stars form, implied it was an older star that had had time to wander off from its birthplace. On the other hand, its chemical makeup didn't match that commonly seen in the second type.

"It was clear," said the paper's lead author Hagai Perets, "that we were seeing a new type of supernova."

The scientists turned to computer simulations to see what kind of process could have produced such a result. The common type of exploding white dwarf (a type Ia supernova) is mainly made up of carbon and oxygen, and the chemical composition of the ejected material reflects this. The newly discovered supernova had unusually high levels of the elements calcium and titanium; these are the products of a nuclear reaction involving helium, rather than carbon and oxygen.

Where did the helium come from? The simulations suggest that a pair of white dwarfs are involved; one of them stealing helium from the other. When the thief star's helium load rises past a certain point, the explosion occurs.

"The donor star is probably completely destroyed in the process, but we're not quite sure about the fate of the thief star," said Gal-Yam.

"This supernova confirms my old idea that there should be several ways that supernova explosions could happen, and that we should observe a variety of events," Arnett said. "This event was classified in a group that included vastly different explosions, including core collapse supernovae, which make a neutron star or black hole, and detonations of white dwarfs made of carbon and oxygen."

The scientists believe that several other previously observed supernovae may fit this pattern. In fact, these relatively dim explosions might not be all that rare; if so, their occurrence could explain some puzzling phenomena in the universe.

For example, almost all the elements heavier than hydrogen and helium have been created in and dispersed by supernovae; the new type could help explain the prevalence of calcium in both the universe and in our bodies.

"Observations like this are beginning to sort out the complexity that we see out there," Arnett said.

It might also account for observed concentrations of particles called positrons in the center of our galaxy. Positrons are identical to electrons, but with an opposite charge, and some have hypothesized that the decay of yet unseen "dark matter" particles may be the cause of their presence. But one of the products of the new supernova is a radioactive form of titanium that, as it decays, emits positrons.

"Dark matter may or may not exist," said Gal-Yam, "but these positrons are perhaps just as easily accounted for by the third type of supernova."

Other members of the research team include Paolo Mazzali of the Max-Planck Institute for Astrophysics in Germany; the Scuola Normale Superiore, Pisa; and the INAF/Padova Observatory in Italy. Additional researchers from the U.S., Canada, Chile and the UK also contributed.

Jennifer Fitzenberger | University of Arizona
Further information:
http://www.arizona.edu

Further reports about: Astronomer Gal-Yam Observatory Supernova computer simulation discover white dwarf

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>