Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Arizona Astronomer Helps Discover New Supernova Type

The finding sheds light on some universal mysteries, including the possibility that exploding stars created some of the matter that makes up our bodies.

Not all explosions are created equal – it's as true for film effects as it is for stars. An international team of scientists, including a University of Arizona astronomer, has identified a third type of exploding star, or supernova.

Until now, scientists had only observed two kinds of supernovae – either hot, young giants that go out in a violent display as they collapse under their own weight, or old, dense white dwarves that blow up in a thermonuclear explosion. The new supernova appeared in telescope images in January 2005. Seeing that it had recently begun the process of exploding, scientists started collecting and combining data from different telescope sites around the world, measuring both the amount of material thrown off in the explosion and its chemical makeup. The team, led by principal investigator Avishay Gal-Yam at the Weizmann Institute of Science in Rehovot, Israel, soon found that the new supernova did not fit either of the known patterns.

"Such events were predicted but never observed until now," said team member David Arnett, a Regents' Professor of Astronomy at the University of Arizona’s Steward Observatory. A senior theorist on the paper, Arnett performed calculations that explained the puzzling distributions of chemical elements in the supernova remnant, the "smoking gun" of the stellar explosion. The findings appeared in the May 20 issue of the journal Nature.

Working like detectives on a crime scene of cosmic proportions, the team deciphered the evidence and reconstructed the events leading to the star's demise. By analyzing the spectral pattern of light coming from the supernova, they sifted through the thermonuclear ashes to infer the conditions under which the explosion unfolded, even to the point of identifying the progenitor as a helium-rich white dwarf that detonated.

On one hand, the amount of material hurled out from the supernova was too small for it to have come from an exploding giant. In addition, its location, distant from the busy hubs where new stars form, implied it was an older star that had had time to wander off from its birthplace. On the other hand, its chemical makeup didn't match that commonly seen in the second type.

"It was clear," said the paper's lead author Hagai Perets, "that we were seeing a new type of supernova."

The scientists turned to computer simulations to see what kind of process could have produced such a result. The common type of exploding white dwarf (a type Ia supernova) is mainly made up of carbon and oxygen, and the chemical composition of the ejected material reflects this. The newly discovered supernova had unusually high levels of the elements calcium and titanium; these are the products of a nuclear reaction involving helium, rather than carbon and oxygen.

Where did the helium come from? The simulations suggest that a pair of white dwarfs are involved; one of them stealing helium from the other. When the thief star's helium load rises past a certain point, the explosion occurs.

"The donor star is probably completely destroyed in the process, but we're not quite sure about the fate of the thief star," said Gal-Yam.

"This supernova confirms my old idea that there should be several ways that supernova explosions could happen, and that we should observe a variety of events," Arnett said. "This event was classified in a group that included vastly different explosions, including core collapse supernovae, which make a neutron star or black hole, and detonations of white dwarfs made of carbon and oxygen."

The scientists believe that several other previously observed supernovae may fit this pattern. In fact, these relatively dim explosions might not be all that rare; if so, their occurrence could explain some puzzling phenomena in the universe.

For example, almost all the elements heavier than hydrogen and helium have been created in and dispersed by supernovae; the new type could help explain the prevalence of calcium in both the universe and in our bodies.

"Observations like this are beginning to sort out the complexity that we see out there," Arnett said.

It might also account for observed concentrations of particles called positrons in the center of our galaxy. Positrons are identical to electrons, but with an opposite charge, and some have hypothesized that the decay of yet unseen "dark matter" particles may be the cause of their presence. But one of the products of the new supernova is a radioactive form of titanium that, as it decays, emits positrons.

"Dark matter may or may not exist," said Gal-Yam, "but these positrons are perhaps just as easily accounted for by the third type of supernova."

Other members of the research team include Paolo Mazzali of the Max-Planck Institute for Astrophysics in Germany; the Scuola Normale Superiore, Pisa; and the INAF/Padova Observatory in Italy. Additional researchers from the U.S., Canada, Chile and the UK also contributed.

Jennifer Fitzenberger | University of Arizona
Further information:

Further reports about: Astronomer Gal-Yam Observatory Supernova computer simulation discover white dwarf

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>