Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Universal Three-body Relation: Heidelberg physicists succeed in revealing the scaling behaviour of exotic giant molecules


When a two-body relation becomes a three-body relation, the behaviour of the system changes and typically becomes more complex.

While the basic physics of two interacting particles is well understood, the mathematical description of a three- or many-body system becomes increasingly difficult, such that calculating the dynamics can blast the capacities of even modern super computers.

Schematic representation of Efimov trimers formed from two caesium atoms and one lithium atom.

Picture credits: Juris Ulmanis

However, under certain conditions, the quantum mechanical three-body problem may have a universal scaling solution. The predictions of such a model have now been confirmed experimentally by physicists of Heidelberg University. The scientists under Prof. Dr. Matthias Weidemüller investigated three-particle molecules, known as trimers, under exotic conditions. The scientific results were published in “Physical Review Letters”.

The scientific work done in Heidelberg is based on a theory which was posed by the Russian physicist Vitaly Efimov more than 40 years ago. It focuses on finding physical laws capable of predicting the behaviour and energy states of an arbitrary number of particles.

... more about:
»Efimov »Physics »Relation »energy »evidence »prediction

According to Efimov’s prediction, bound states of three atoms can be universally described under certain conditions. The scientist found that infinitely many quantum mechanical bound states for the “ménage à trois” exist, even if two of the atoms cannot bind together. These so-called Efimov trimers are formed due to the long-range quantum mechanical interaction and they are completely independent of the underlying type of the three interacting particles.

Prof. Weidemüller says that Efimov’s prediction was considered “exotic” for a long time, since the conditions under which these molecular three-body bound states exist seemed unattainable in research. “Physicists with different scientific backgrounds have tried in vain to find signatures of the Efimov trimers,” explains the Heidelberg scientist. It was only about ten years ago that scientists from Innsbruck were able to provide clear evidence for these trimers in systems consisting of three identical atoms.

Shortly afterwards, physicists working with Prof. Dr. Selim Jochim in Heidelberg succeeded in measuring the exact binding energy of the Efimov trimers. In the course of scientific work performed at the Center for Quantum Dynamics and the Institute for Physics of Heidelberg University, further properties of the exotic Efimov trimers were investigated. To this end, the researchers cooled a gas of two different atomic species – caesium and lithium – to temperatures close to absolute zero. At the same time, they took care to precisely control the interaction between these lithium and caesium atom pairs.

In an ultra-high vacuum chamber the atoms were cooled solely by laser light and stored by light forces in a focused laser beam for several seconds. The coupling strength between the atoms can then be controlled by changing the magnetic field. For this Prof. Weidemüller’s team made use of what are known as atomic scattering resonances. The evidence of the trimers is based on the decay into their three components at a well-defined coupling strength. The strength of this coupling scales independently of the respective trimer bound state according to a purely numeric scaling factor. “We proved that the universal scaling is also valid in systems with different atoms,” says Rico Pires, who is working on his dissertation in Prof. Weidemüller’s team.

These scientists also succeeded in confirming that the scaling factor changes for a trimer of different particles as opposed to a trimer state of identical atoms, as PhD student Juris Ulmanis explains. They thus showed that Efimov’s theory is applicable to a large number of systems. Project leader Dr. Eva Kuhnle points to another success of the experimental work: “For the first time we were able to not only prove the existence of the trimer ground state, but also the first two excited states. These molecules consisting of three atoms then reach macroscopic sizes, comparable to that of a bacterium.”

Prof. Weidemüller emphasises that these research results are important for many areas of physics – ranging from atomic to nuclear physics: “It is not only the evidence for the universal scaling behaviour that is interesting, but also the accurate measurement of the tiniest deviations of this scaling. From this we gain new knowledge how Efimov’s theory can be applied to realistic three-body systems,” says the Heidelberg scientist. “Our aim is a deeper understanding of quantum mechanical many-body systems, one of the most important but also most difficult research areas in modern physics.”

Original publication:
R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E. D. Kuhnle and M. Weidemüller: Observation of Efimov Resonances in a Mixture with Extreme Mass Imbalance. Phys. Rev. Lett. 112, 250404 (published 25 June 2014), doi: 10.1103/PhysRevLett.112.250404

Internet information:

Schematic representation of Efimov trimers formed from two caesium atoms and one lithium atom. While the trimer’s proportions are microscopic in its ground state, in the second excited state it is nearly a micrometre in size. The size of trimers scales based on a universal scaling law. These trimer states were observed in a mixture of caesium and lithium atoms at temperatures approaching absolute zero. Picture credits: Juris Ulmanis

Prof. Dr. Matthias Weidemüller
Institute for Physics
Phone: +49 6221 54-19471

Communications and Marketing
Press Office, phone: +49 6221 54-2311

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: Efimov Physics Relation energy evidence prediction

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>