Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universal Three-body Relation: Heidelberg physicists succeed in revealing the scaling behaviour of exotic giant molecules

21.07.2014

When a two-body relation becomes a three-body relation, the behaviour of the system changes and typically becomes more complex.

While the basic physics of two interacting particles is well understood, the mathematical description of a three- or many-body system becomes increasingly difficult, such that calculating the dynamics can blast the capacities of even modern super computers.


Schematic representation of Efimov trimers formed from two caesium atoms and one lithium atom.

Picture credits: Juris Ulmanis

However, under certain conditions, the quantum mechanical three-body problem may have a universal scaling solution. The predictions of such a model have now been confirmed experimentally by physicists of Heidelberg University. The scientists under Prof. Dr. Matthias Weidemüller investigated three-particle molecules, known as trimers, under exotic conditions. The scientific results were published in “Physical Review Letters”.

The scientific work done in Heidelberg is based on a theory which was posed by the Russian physicist Vitaly Efimov more than 40 years ago. It focuses on finding physical laws capable of predicting the behaviour and energy states of an arbitrary number of particles.

... more about:
»Efimov »Physics »Relation »energy »evidence »prediction

According to Efimov’s prediction, bound states of three atoms can be universally described under certain conditions. The scientist found that infinitely many quantum mechanical bound states for the “ménage à trois” exist, even if two of the atoms cannot bind together. These so-called Efimov trimers are formed due to the long-range quantum mechanical interaction and they are completely independent of the underlying type of the three interacting particles.

Prof. Weidemüller says that Efimov’s prediction was considered “exotic” for a long time, since the conditions under which these molecular three-body bound states exist seemed unattainable in research. “Physicists with different scientific backgrounds have tried in vain to find signatures of the Efimov trimers,” explains the Heidelberg scientist. It was only about ten years ago that scientists from Innsbruck were able to provide clear evidence for these trimers in systems consisting of three identical atoms.

Shortly afterwards, physicists working with Prof. Dr. Selim Jochim in Heidelberg succeeded in measuring the exact binding energy of the Efimov trimers. In the course of scientific work performed at the Center for Quantum Dynamics and the Institute for Physics of Heidelberg University, further properties of the exotic Efimov trimers were investigated. To this end, the researchers cooled a gas of two different atomic species – caesium and lithium – to temperatures close to absolute zero. At the same time, they took care to precisely control the interaction between these lithium and caesium atom pairs.

In an ultra-high vacuum chamber the atoms were cooled solely by laser light and stored by light forces in a focused laser beam for several seconds. The coupling strength between the atoms can then be controlled by changing the magnetic field. For this Prof. Weidemüller’s team made use of what are known as atomic scattering resonances. The evidence of the trimers is based on the decay into their three components at a well-defined coupling strength. The strength of this coupling scales independently of the respective trimer bound state according to a purely numeric scaling factor. “We proved that the universal scaling is also valid in systems with different atoms,” says Rico Pires, who is working on his dissertation in Prof. Weidemüller’s team.

These scientists also succeeded in confirming that the scaling factor changes for a trimer of different particles as opposed to a trimer state of identical atoms, as PhD student Juris Ulmanis explains. They thus showed that Efimov’s theory is applicable to a large number of systems. Project leader Dr. Eva Kuhnle points to another success of the experimental work: “For the first time we were able to not only prove the existence of the trimer ground state, but also the first two excited states. These molecules consisting of three atoms then reach macroscopic sizes, comparable to that of a bacterium.”

Prof. Weidemüller emphasises that these research results are important for many areas of physics – ranging from atomic to nuclear physics: “It is not only the evidence for the universal scaling behaviour that is interesting, but also the accurate measurement of the tiniest deviations of this scaling. From this we gain new knowledge how Efimov’s theory can be applied to realistic three-body systems,” says the Heidelberg scientist. “Our aim is a deeper understanding of quantum mechanical many-body systems, one of the most important but also most difficult research areas in modern physics.”

Original publication:
R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E. D. Kuhnle and M. Weidemüller: Observation of Efimov Resonances in a Mixture with Extreme Mass Imbalance. Phys. Rev. Lett. 112, 250404 (published 25 June 2014), doi: 10.1103/PhysRevLett.112.250404

Internet information:
http://www.physi.uni-heidelberg.de/Forschung/QD

Caption:
Schematic representation of Efimov trimers formed from two caesium atoms and one lithium atom. While the trimer’s proportions are microscopic in its ground state, in the second excited state it is nearly a micrometre in size. The size of trimers scales based on a universal scaling law. These trimer states were observed in a mixture of caesium and lithium atoms at temperatures approaching absolute zero. Picture credits: Juris Ulmanis

Contact:
Prof. Dr. Matthias Weidemüller
Institute for Physics
Phone: +49 6221 54-19471
weidemueller@uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

Further reports about: Efimov Physics Relation energy evidence prediction

More articles from Physics and Astronomy:

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

nachricht Filling the early universe with knots can explain why the world is three-dimensional
17.10.2017 | Vanderbilt University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>