Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Universal Three-body Relation: Heidelberg physicists succeed in revealing the scaling behaviour of exotic giant molecules


When a two-body relation becomes a three-body relation, the behaviour of the system changes and typically becomes more complex.

While the basic physics of two interacting particles is well understood, the mathematical description of a three- or many-body system becomes increasingly difficult, such that calculating the dynamics can blast the capacities of even modern super computers.

Schematic representation of Efimov trimers formed from two caesium atoms and one lithium atom.

Picture credits: Juris Ulmanis

However, under certain conditions, the quantum mechanical three-body problem may have a universal scaling solution. The predictions of such a model have now been confirmed experimentally by physicists of Heidelberg University. The scientists under Prof. Dr. Matthias Weidemüller investigated three-particle molecules, known as trimers, under exotic conditions. The scientific results were published in “Physical Review Letters”.

The scientific work done in Heidelberg is based on a theory which was posed by the Russian physicist Vitaly Efimov more than 40 years ago. It focuses on finding physical laws capable of predicting the behaviour and energy states of an arbitrary number of particles.

... more about:
»Efimov »Physics »Relation »energy »evidence »prediction

According to Efimov’s prediction, bound states of three atoms can be universally described under certain conditions. The scientist found that infinitely many quantum mechanical bound states for the “ménage à trois” exist, even if two of the atoms cannot bind together. These so-called Efimov trimers are formed due to the long-range quantum mechanical interaction and they are completely independent of the underlying type of the three interacting particles.

Prof. Weidemüller says that Efimov’s prediction was considered “exotic” for a long time, since the conditions under which these molecular three-body bound states exist seemed unattainable in research. “Physicists with different scientific backgrounds have tried in vain to find signatures of the Efimov trimers,” explains the Heidelberg scientist. It was only about ten years ago that scientists from Innsbruck were able to provide clear evidence for these trimers in systems consisting of three identical atoms.

Shortly afterwards, physicists working with Prof. Dr. Selim Jochim in Heidelberg succeeded in measuring the exact binding energy of the Efimov trimers. In the course of scientific work performed at the Center for Quantum Dynamics and the Institute for Physics of Heidelberg University, further properties of the exotic Efimov trimers were investigated. To this end, the researchers cooled a gas of two different atomic species – caesium and lithium – to temperatures close to absolute zero. At the same time, they took care to precisely control the interaction between these lithium and caesium atom pairs.

In an ultra-high vacuum chamber the atoms were cooled solely by laser light and stored by light forces in a focused laser beam for several seconds. The coupling strength between the atoms can then be controlled by changing the magnetic field. For this Prof. Weidemüller’s team made use of what are known as atomic scattering resonances. The evidence of the trimers is based on the decay into their three components at a well-defined coupling strength. The strength of this coupling scales independently of the respective trimer bound state according to a purely numeric scaling factor. “We proved that the universal scaling is also valid in systems with different atoms,” says Rico Pires, who is working on his dissertation in Prof. Weidemüller’s team.

These scientists also succeeded in confirming that the scaling factor changes for a trimer of different particles as opposed to a trimer state of identical atoms, as PhD student Juris Ulmanis explains. They thus showed that Efimov’s theory is applicable to a large number of systems. Project leader Dr. Eva Kuhnle points to another success of the experimental work: “For the first time we were able to not only prove the existence of the trimer ground state, but also the first two excited states. These molecules consisting of three atoms then reach macroscopic sizes, comparable to that of a bacterium.”

Prof. Weidemüller emphasises that these research results are important for many areas of physics – ranging from atomic to nuclear physics: “It is not only the evidence for the universal scaling behaviour that is interesting, but also the accurate measurement of the tiniest deviations of this scaling. From this we gain new knowledge how Efimov’s theory can be applied to realistic three-body systems,” says the Heidelberg scientist. “Our aim is a deeper understanding of quantum mechanical many-body systems, one of the most important but also most difficult research areas in modern physics.”

Original publication:
R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E. D. Kuhnle and M. Weidemüller: Observation of Efimov Resonances in a Mixture with Extreme Mass Imbalance. Phys. Rev. Lett. 112, 250404 (published 25 June 2014), doi: 10.1103/PhysRevLett.112.250404

Internet information:

Schematic representation of Efimov trimers formed from two caesium atoms and one lithium atom. While the trimer’s proportions are microscopic in its ground state, in the second excited state it is nearly a micrometre in size. The size of trimers scales based on a universal scaling law. These trimer states were observed in a mixture of caesium and lithium atoms at temperatures approaching absolute zero. Picture credits: Juris Ulmanis

Prof. Dr. Matthias Weidemüller
Institute for Physics
Phone: +49 6221 54-19471

Communications and Marketing
Press Office, phone: +49 6221 54-2311

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: Efimov Physics Relation energy evidence prediction

More articles from Physics and Astronomy:

nachricht New record in materials research: 1 terapascals in a laboratory
22.07.2016 | Universität Bayreuth

nachricht Mapping electromagnetic waveforms
22.07.2016 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>



Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

More VideoLinks >>>