Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undisturbed excitation with pulsed light

22.11.2012
PTB presents a new procedure to excite atoms and molecules using a laser

The best method to obtain the most precise information on the inner structure of atoms and molecules is to excite them by means of resonant laser light. Unfortunately, just this laser light (above a certain intensity) can lead to measurable modifications within the atom's electron shell.


Stylized representation of the excitation of a single ion in a trap by means of a "hyper" Ramsey pulse sequence.(Fig. PTB)

Scientists of the Physikalisch-Technische Bundesanstalt (PTB) have now shown experimentally how to prevent such "light shifts". This confirms the advantages of "hyper" Ramsey excitation that had already been predicted theoretically. This method can make their optical ytterbium atomic clocks even more accurate. Furthermore, "hyper" Ramsey excitation can be helpful in numerous applications where the focus lies on a precise, controlled interaction between atoms and laser light.

The results have been published in the current issue of the scientific journal "Physical Review Letters".

"Light shift" means that intense laser light modifies the position of the atomic energy levels; the shift depends on the intensity and the wavelength of the laser used. If one is seeking the properties of the atom as an undisturbed quantum object, this shift must be either prevented or corrected. With the new procedure, which has been applied experimentally for the first time at PTB, a sequence of judiciously selected laser pulses used to excite the atom eliminates the disturbing light shift effect.

The basic idea of using pulsed radiation to perform precise measurements goes back to Norman Ramsey, who was awarded the Nobel Prize in physics in 1989 for this finding. With this method, a first laser pulse is shot at the atom, where it starts a resonant excitation. Then the pulsation excited in the electron shell of the atom continues undisturbed "in the dark" until eventually a second laser pulse completes the comparison between the resonance frequency of the atom and the laser frequency. A similar approach is also usual in clock comparisons: two clocks are set to the same time, they are then left to run on and are eventually compared again. The result shows which clock was faster or slower than the other.

The signal of the Ramsey excitation contains, due to the dark phase between the laser pulses, an averaging over the positions of the states of the atom with and without a light shift. In principle, it would be possible to compensate for the light shift by modifying the laser frequency by exactly this quantity (exclusively) during the pulses. This, however, would not bring great improvement from a practical point of view as the precise information concerning the disturbance of the atom should be known to begin with. In 2010, a group of scientists (also with PTB's participation) suggested a method they called "hyper" Ramsey excitation in order to solve this problem. This theoretical consideration has now been confirmed experimentally for the first time. In the case of "hyper" Ramsey excitation, a third laser pulse of the same intensity and the same frequency, but with an inverted phase, is inserted into the dark phase. This third laser pulse automatically compensates for possible errors which could occur due to misjudgment as regards the size of the light shift and due to small variations in the laser intensity during the light pulses.

Realizing "hyper" Ramsey excitation experimentally succeeded in an atomic transition which allows very slight frequency variations to be detected and, at the same time, exhibits a large light shift, since a high laser intensity is necessary for its excitation. It is an electrical octupole transition in the Yb+ ion which is being investigated as a basis for an optical clock. The experiment confirmed the theoretical predictions concerning the advantages of "hyper" Ramsey excitation and attained a 10,000-fold suppression of the light shift. This opens up the possibility for the optical Yb+ clock to achieve even greater accuracy. This method could also be interesting for other researchers trying to obtain a precisely controlled interaction between atoms and laser light, for instance in the field of quantum information processing.

This allows them to remove an important obstacle in the development of even better optical atomic clocks, because the stability of the lasers used is a critical point. The "pendulum", i.e. the swinging system of such a clock, is a narrow optical absorption line in an atom or ion, whose transition frequency is read out by a laser. The linewidth of these transitions typically amounts to a few millihertz, a value which could not be reached by glass resonators due to their limited length stability.

But this is now possible. The laser to which the silicon resonator is stabilized reaches a linewidth of less than 40 mHz and can, thus, contribute to moving into a new dimension in the development of optical atomic clocks. This work could also benefit optical precision spectroscopy, another focal point of research of the Excellence Cluster QUEST.

"For the future, there is still room to improve the optical mirrors whose thermal noise limits the achievable stability", explains PTB physicist Christian Hagemann. Therefore, the researchers will in future go down to even lower temperatures and use novel highly reflecting structures to improve the frequency stability by another order of magnitude

Scientific publication

Huntemann, N.; Lipphardt, B.; Okhapkin, M.; Tamm, Chr.; Peik, E.; Taichenachev, A.V.; Yudin, V.I: Generalized Ramsey excitation scheme with suppressed light shift. Phys. Rev. Lett. 109 (2012) 213002

http://link.aps.org/doi/10.1103/PhysRevLett.109.213002

Contact:

Dr. Ekkehard Peik, PTB Department 4.4 Time and Frequency,
phone: +49(0)531) 592-4400,
e-mail: ekkehard.peik@ptb.de

Dr. Ekkehard Peik | PTB
Further information:
http://www.ptb.de

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>