Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI astronomers capture first-of-kind image at distant star

14.01.2010
Two University of Iowa researchers have made the first direct radio image of a stellar coronal loop at a star, other than the sun, thereby providing scientists with information that may lead to a better understanding of how such phenomena as space weather affect the Earth.

Robert Mutel, professor in the University of Iowa College of Liberal Arts and Sciences Department of Physics and Astronomy, and his graduate student William Peterson of Marshalltown, Iowa, spearheaded the research, which included astronomers from New Mexico and Switzerland. They published their findings in the Jan. 14 issue of the Journal Nature.

Mutel said that the image of the coronal loop (roughly resembling a rainbow) was made of the star Algol, a well-known variable star in the constellation Perseus. Algol (Arabic for demon) is also know as the Demon Star and is one of the first eclipsing binary stars and variable stars to have been discovered. Its brightness as seen from Earth temporarily decreases roughly every 69 hours.

"We imaged the coronal loop using a global array of radio telescopes," Mutel said. "We also carefully compared radio and optical coordinates, so we know where the radio source was located with respect to the star."

"Earlier attempts to image stellar coronal loops in visible light resulted in fuzzy blobs, but we used a global array of radio telescopes to make a series of images over a six-month period. High resolution radio interferometery allows us to image features which would otherwise be undetectable."

The instrument Mutel and Peterson used is actually a combination of 13 radio telescopes linked by computer. They include the 10-telescope VLBA (Very Long Baseline Array) composed of telescopes in Mauna Kea, Hawaii, St. Croix in the Virgin Islands, and North Liberty, Iowa; a 100-meter instrument at the Max Planck Institute for Radio Astronomy near Bonn, Germany; the National Radio Astronomy Observatory (NRAO) at Green Bank, W. Va.; and the NRAO's Very Large Array (VLA) in New Mexico.

Despite the impressive coordination of telescopes dedicated to capturing information from Algol, making sense out of all the data is difficult. "Learning how to take radio data and turn it into an image is a challenge," Peterson said.

Interpreting the data is perhaps just as challenging. Mutel noted that the coronal loop at Algol is similar to those at the sun, but the magnetic field at Algol is about 1,000 times more powerful.

Peterson said that the larger-than-predicted size of the coronal loop is probably due to the tidal effects of the companion star distorting the loop and stretching it. Additionally, the companion star causes the coronal loop to continually face the companion star.

Mutel said that a better understanding of Algol's coronal loops might help us to better understand the sun, something that could benefit a wide range of human activities.

"We really need to understand our sun," he said. "The sun is close to us and can be studied, but it is only one star. By studying other stars, we will be able to put its behavior into a broader context.

"Coronal loops at the sun are associated with sunspots. Sunspots, in turn, are associated with space weather, a constant stream of charged particles flowing outward from the sun. The intensity of solar radiation can affect everything from communications systems that rely on satellites to the health of astronauts who must sometimes work in space."

Mutel said that future research likely will focus on obtaining coronal loop images at other stars.

"Perhaps we can work toward predictions of space weather. Maybe we can better understand the physics of space weather through a study of coronal loops," he said.

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>