Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UD researcher on project team for NASA's first visit to the sun

07.10.2010
A University of Delaware researcher is helping to design instruments for a robotic space probe that will go where no other has gone before: the sun.

William Matthaeus, professor of physics and astronomy at UD, is involved in NASA's Solar Probe Plus project, which is slated to launch by 2018.

The unmanned spacecraft, the size of a small car, will plunge directly into the sun's atmosphere to help uncover answers to perplexing mysteries about the fiery ball of plasma at the center of our solar system.

"The experiments selected for Solar Probe Plus are specifically designed to solve two key questions of solar physics -- why is the sun's outer atmosphere so much hotter than the sun's visible surface, and what propels the solar wind that affects Earth and our solar system? We've been struggling with these questions for decades and this mission should finally provide those answers," said Dick Fisher, director of NASA's Heliophysics Division, in a NASA news release.

Astrophysicists have been discussing the idea of sending an unmanned mission to the sun for years, Matthaeus says, but the technology to protect a space probe from the star's mega-heat was unavailable until recently.

To avoid the fate of the mythical Icarus, who flew too close to the sun and melted his wax-and-feather wings, the spacecraft's heat shield must be able to withstand extremely high temperatures and blasts of intense radiation in the solar atmosphere as it makes the nearly 90-million-mile trip from Earth to within 4 million miles of the sun.

“At the Solar Probe's closest approach, the light from the sun will be more than 500 times as intense as at Earth, and the surrounding gas, although very tenuous, will likely be at hundreds of thousands of degrees,” Matthaeus notes. “Fortunately, NASA engineers have developed an effective special carbon-fiber heat shield and thermal control system.”

The Solar Probe Plus mission encompasses five investigations totaling approximately $180 million for preliminary analysis, design, development and testing of the spacecraft and the instruments that will fly aboard it.

Matthaeus is the lead theorist on the Integrated Science Investigation of the Sun (ISIS) project, which is led by David McComas at the Southwest Research Institute in San Antonio, Texas. The team is developing two instruments for monitoring the electrons, protons and ions that are accelerated to high energies in the sun's atmosphere. This continuous stream of outward-flowing particles from the sun is known as solar wind. It causes the northern and southern lights on Earth, and can cause magnetic storms capable of knocking out electrical power grids.

“The more we rely on satellite technology, such as GPS, the more vulnerable to magnetic storms we become. So we need to understand how they work in order to protect societal assets such as satellites in space, as well as humans who explore or work in space,” says Matthaeus.

“The Solar Probe Plus orbit will spiral inward. The spacecraft will eventually get as close to 9-10 solar radii, which is about 20 times closer to the sun than Earth is,” he notes.

As the instruments aboard the spacecraft measure magnetic and electric properties, astrophysicists will be able to eliminate some theories for how solar wind is generated and better understand the heliosphere, the vast magnetic bubble that contains our solar system.

“It is a real mission of discovery, visiting the sun's immediate environment for the first time,” notes Matthaeus. “All along its journey into the solar atmosphere, Solar Probe will measure many of the ongoing processes that are responsible for maintaining and controlling the heliosphere.”

Matthaeus is working to have UD students participate in exchange programs with collaborators from Italy, Great Britain, Thailand and Argentina who are involved in the theoretical research related to the mission.

Additionally, Matthaeus is a co-investigator on the Plasma Electron And Current Experiment (PEACE) electron instrument for the Cluster mission, an unmanned space mission sponsored by the European Space Agency to study Earth's magnetosphere using four identical spacecraft orbiting the Earth in formation; and on NASA's Magnetospheric Multiscale Mission, under development to explore magnetic reconnection, the often explosive mechanism by which magnetic energy is dissipated in the outer layers of Earth's magnetosphere, where Earth's magnetic field meets the solar wind.

Article by Tracey Bryant

Tracey Bryant | EurekAlert!
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>