Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UD researcher on project team for NASA's first visit to the sun

07.10.2010
A University of Delaware researcher is helping to design instruments for a robotic space probe that will go where no other has gone before: the sun.

William Matthaeus, professor of physics and astronomy at UD, is involved in NASA's Solar Probe Plus project, which is slated to launch by 2018.

The unmanned spacecraft, the size of a small car, will plunge directly into the sun's atmosphere to help uncover answers to perplexing mysteries about the fiery ball of plasma at the center of our solar system.

"The experiments selected for Solar Probe Plus are specifically designed to solve two key questions of solar physics -- why is the sun's outer atmosphere so much hotter than the sun's visible surface, and what propels the solar wind that affects Earth and our solar system? We've been struggling with these questions for decades and this mission should finally provide those answers," said Dick Fisher, director of NASA's Heliophysics Division, in a NASA news release.

Astrophysicists have been discussing the idea of sending an unmanned mission to the sun for years, Matthaeus says, but the technology to protect a space probe from the star's mega-heat was unavailable until recently.

To avoid the fate of the mythical Icarus, who flew too close to the sun and melted his wax-and-feather wings, the spacecraft's heat shield must be able to withstand extremely high temperatures and blasts of intense radiation in the solar atmosphere as it makes the nearly 90-million-mile trip from Earth to within 4 million miles of the sun.

“At the Solar Probe's closest approach, the light from the sun will be more than 500 times as intense as at Earth, and the surrounding gas, although very tenuous, will likely be at hundreds of thousands of degrees,” Matthaeus notes. “Fortunately, NASA engineers have developed an effective special carbon-fiber heat shield and thermal control system.”

The Solar Probe Plus mission encompasses five investigations totaling approximately $180 million for preliminary analysis, design, development and testing of the spacecraft and the instruments that will fly aboard it.

Matthaeus is the lead theorist on the Integrated Science Investigation of the Sun (ISIS) project, which is led by David McComas at the Southwest Research Institute in San Antonio, Texas. The team is developing two instruments for monitoring the electrons, protons and ions that are accelerated to high energies in the sun's atmosphere. This continuous stream of outward-flowing particles from the sun is known as solar wind. It causes the northern and southern lights on Earth, and can cause magnetic storms capable of knocking out electrical power grids.

“The more we rely on satellite technology, such as GPS, the more vulnerable to magnetic storms we become. So we need to understand how they work in order to protect societal assets such as satellites in space, as well as humans who explore or work in space,” says Matthaeus.

“The Solar Probe Plus orbit will spiral inward. The spacecraft will eventually get as close to 9-10 solar radii, which is about 20 times closer to the sun than Earth is,” he notes.

As the instruments aboard the spacecraft measure magnetic and electric properties, astrophysicists will be able to eliminate some theories for how solar wind is generated and better understand the heliosphere, the vast magnetic bubble that contains our solar system.

“It is a real mission of discovery, visiting the sun's immediate environment for the first time,” notes Matthaeus. “All along its journey into the solar atmosphere, Solar Probe will measure many of the ongoing processes that are responsible for maintaining and controlling the heliosphere.”

Matthaeus is working to have UD students participate in exchange programs with collaborators from Italy, Great Britain, Thailand and Argentina who are involved in the theoretical research related to the mission.

Additionally, Matthaeus is a co-investigator on the Plasma Electron And Current Experiment (PEACE) electron instrument for the Cluster mission, an unmanned space mission sponsored by the European Space Agency to study Earth's magnetosphere using four identical spacecraft orbiting the Earth in formation; and on NASA's Magnetospheric Multiscale Mission, under development to explore magnetic reconnection, the often explosive mechanism by which magnetic energy is dissipated in the outer layers of Earth's magnetosphere, where Earth's magnetic field meets the solar wind.

Article by Tracey Bryant

Tracey Bryant | EurekAlert!
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>