Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB researchers demonstrate that 15=3x5 about half of the time

20.08.2012
Computing prime factors may sound like an elementary math problem, but try it with a large number, say one that contains more than 600 digits, and the task becomes enormously challenging and impossibly time-consuming.

Now, a group of researchers at UC Santa Barbara has designed and fabricated a quantum processor capable of factoring a composite number — in this case the number 15 — into its constituent prime factors, 3 and 5.

Although modest compared to a 600-digit number, the achievement represents a milestone on the road map to building a quantum computer capable of factoring much larger numbers, with significant implications for cryptography and cybersecurity. The results are published in the advance online issue of the journal Nature Physics.

"Fifteen is a small number, but what's important is we've shown that we can run a version of Peter Shor's prime factoring algorithm on a solid state quantum processor. This is really exciting and has never been done before," said Erik Lucero, the paper's lead author. Now a postdoctoral researcher in experimental quantum computing at IBM, Lucero was a doctoral student in physics at UCSB when the research was conducted and the paper was written.

"What is important is that the concepts used in factoring this small number remain the same when factoring much larger numbers," said Andrew Cleland, a professor of physics at UCSB and a collaborator on the experiment. "We just need to scale up the size of this processor to something much larger. This won't be easy, but the path forward is clear."

Practical applications motivated the research, according to Lucero, who explained that factoring very large numbers is at the heart of cybersecurity protocols, such as the most common form of encoding, known as RSA encryption. "Anytime you send a secure transmission — like your credit card information — you are relying on security that is based on the fact that it's really hard to find the prime factors of large numbers," he said. Using a classical computer and the best-known classical algorithm, factoring something like RSA Laboratory's largest published number — which contains over 600 decimal digits — would take longer than the age of the universe, he continued.

A quantum computer could reduce this wait time to a few tens of minutes. "A quantum computer can solve this problem faster than a classical computer by about 15 orders of magnitude," said Lucero. "This has widespread effect. A quantum computer will be a game changer in a lot of ways, and certainly with respect to computer security."

So, if quantum computing makes RSA encryption no longer secure, what will replace it? The answer, Lucero said, is quantum cryptography. "It's not only harder to break, but it allows you to know if someone has been eavesdropping, or listening in on your transmission. Imagine someone wiretapping your phone, but now, every time that person tries to listen in on your conversation, the audio gets jumbled. With quantum cryptography, if someone tries to extract information, it changes the system, and both the transmitter and the receiver are aware of it."

To conduct the research, Lucero and his colleagues designed and fabricated a quantum processor to map the problem of factoring the number 15 onto a purpose-built superconducting quantum circuit. "We chose the number 15 because it is the smallest composite number that satisfies the conditions appropriate to test Shor's algorithm — it is a product of two prime numbers, and it's not even," he explained.

The quantum processor was implemented using a quantum circuit composed of four superconducting phase qubits — the quantum equivalents of transistors — and five microwave resonators. The complexity of operating these nine quantum elements required building a control system that allows for precise operation and a significant degree of automation — a prototype that will facilitate scaling up to larger and more complex circuits. The research represents a significant step toward a scalable quantum architecture while meeting a benchmark for quantum computation, as well as having historical relevance for quantum information and cryptography.

"After repeating the experiment 150,000 times, we showed that our quantum processor got the right answer just under half the time" Lucero said. "The best we can expect from Shor's algorithm is to get the right answer exactly 50 percent of the time, so our results were essentially what we'd expect theoretically."

The next step, according to Lucero, is to increase the quantum coherence times and go from nine quantum elements to hundreds, then thousands, and on to millions. "Now that we know 15=3x5, we can start thinking about how to factor larger — dare I say — more practical numbers," he said.

Other UCSB researchers participating in the study include John Martinis, professor of physics; Rami Barends, Yu Chen, Matteo Mariantoni, and Y. Yin, postdoctoral fellows in physics; and physics graduate students Julian Kelly, Anthony Megrant, Peter O'Malley, Daniel Sank, Amit Vainsencher, Jim Wenner, and Ted White.

Andrea Estrada | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>