Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCF researchers record world record laser pulse

05.09.2012
A University of Central Florida research team has created the world's shortest laser pulse and in the process may have given scientists a new tool to watch quantum mechanics in action – something that has been hidden from view until now.

UCF Professor Zenghu Chang from the Department of Physics and the College of Optics and Photonics, led the effort that generated a 67-attosecond pulse of extreme ultraviolet light. The results of his research are published online under Early Posting in the journal Optics Letters.

An attosecond is an incomprehensible quintillionith of a second. In other words it would take 15 million billion pulses of the size Chang's team achieved to equal one second. The accomplishment is even more remarkable because the team did it without the use of specialized equipment including a mile-long particle accelerator or a Superdome-sized synchrotron.

"Dr. Chang's success in making ever-shorter light pulses helps open a new door to a previously hidden world, where we can watch electrons move in atoms and molecules, and follow chemical reactions as they take place," said Michael Johnson, the dean of the UCF College of Sciences and a physicist. "It is astounding to imagine that we may now be able to watch quantum mechanics in process."

Quantum mechanics is the study of physics at the microscopic level, specifically looking at energy and matter on this miniscule scale.

There is much excitement about the accomplishment and the promise Chang's work holds for helping scientists understand how the world's smallest building blocks actually work. The technique could lead scientists to understand how energy can be harnessed to transport data, deliver targeted cancer therapies or diagnose disease. The finding marks the first significant breakthrough in the laser pulse field in four years.

In 2001, attosecond pulses were demonstrated for the first time. Since then scientists around the world have been trying to make ever-shorter pulse durations because of the door they could open to understanding the subatomic world. The previous record of an 80-attosecond pulse was set in 2008 at the Max Planck Institute in Garching, Germany. This is the first time an American-led team has set the record.

"The quest for generating shorter and shorter pulses of light has been ongoing since the invention of the laser more than five decades ago," said Bahaa Saleh, dean of CREOL, the College of Optics and Photonics. "Dr. Chang's recent advance brings UCF to the forefront of this Olympic race and opens up new frontiers for seeing and recording ultrafast dynamic atomic phenomena."

Chang's team was able to accomplish the work at the Florida Atto Science &Technology (FAST) lab in UCF's Physical Sciences building.

Using the unprecedented power of laser light enables Chang and his peers to conduct their high-level research in much smaller spaces. Chang's group created a technique called Double Optical Grating that allows extreme ultraviolet light to be cut off in a manner that concentrates the maximum amount of energy in the shortest possible pulse of light. With the affinity for acronyms shared by many ultrafast laser physicists, Chang named the technique DOG. In addition to creating the light pulse, he created an even faster camera to measure it, which is the Phase Retrieval by Omega Oscillation Filtering (PROOF).

###

The Department of Defense's Multidisciplinary University Research Initiative and the National Science Foundation helped fund the research.

Others who contributed to the team's discovery include: Kun Zhao, Qi Zhang, Michael Chini, Yi Wu, and Xiaowei Wang, all at UCF. UCF Stands For Opportunity --The University of Central Florida is a metropolitan research university that ranks as the second largest in the nation with more than 59,000 students. UCF's first classes were offered in 1968. The university offers impressive academic and research environments that power the region's economic development. UCF's culture of opportunity is driven by our diversity, Orlando environment, history of entrepreneurship and our youth, relevance and energy. For more information visit http://news.ucf.edu

Zenaida Kotala | EurekAlert!
Further information:
http://www.ucf.edu

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>