Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCF discovers exoplanet neighbor smaller than Earth

19.07.2012
The University of Central Florida has detected what could be its first planet, only two-thirds the size of Earth and located right around the corner, cosmically speaking, at a mere 33light- years away.

The exoplanet candidate called UCF 1.01, is close to its star, so close it goes around the star in 1.4 days. The planet's surface likely reaches temperatures of more than 1,000 degrees Fahrenheit. The discoverers believe that it has no atmosphere, is only two-thirds the gravity of Earth and that its surface may be volcanic or molten.


UCF scientists have detected what could be its first planet, only two-thirds the size of Earth and located right around the corner, cosmically speaking, at a mere 33 light-years away.

Credit: Artist's Rendering provided by NASA

"We have found strong evidence for a very small, very hot and very close-by planet with the help of the Spitzer Space Telescope," said Kevin Stevenson, a recent Ph.D graduate from the UCF and lead author of the paper, which appears online tomorrow in The Astrophysical Journal. "This discovery is a significant accomplishment for UCF."

Stevenson and his colleagues were studying a hot-Neptune exoplanet, designated GJ 436b, already known to exist around the red-dwarf star GJ 436, when data revealed clues that led them to suspect there could be at least one new planet in that system, perhaps two.

The team noticed slight dips in the amount of infrared light streaming from the star. A review of Spitzer archival data showed that the dips were periodic, suggesting that a planet might be blocking out a small fraction of light as it passed in front of GJ 436, as seen from Earth.

"I could see these faint dips in the starlight and I wanted to determine their source. I knew that if these signals were periodic, they could be from an unknown planet," said Stevenson, who is now a postdoctoral scholar at the University of Chicago.

So he, UCF planetary sciences professor Joseph Harrington and UCF graduate student Nate Lust began looking at the data. They sifted through hundreds of hours of observations collected from Spitzer, the Deep Impact spacecraft, the ground-based Very Large Telescope in Chile and the Canada-France-Hawaii Telescope near the summit of Mauna Kea in Hawaii.

This transit technique, used by a number of telescopes, including NASA's Kepler space telescope, relies on these tiny, partial eclipses to find exoplanet candidates.

Spitzer has performed science work on known exoplanets before, but UCF-1.01 represents the first time Spitzer has made a transit discovery.

With the finding of UCF-1.01, GJ 436 is likely now home to the first multi-transiting-planet system described by a mission other than Kepler. Of the 1,800 stars identified by Kepler as candidates for having planetary systems, only three are verified to contain sub-Earth size exoplanets.

The depth and duration of a transit reveals basic properties of an exoplanet, such as its size and distance from a host star. In UCF-1.01's case, its diameter is estimated at 5,200 miles, or two-thirds that of Earth, placing the world among the smallest on record. The team also noticed hints of yet another potential planet dubbed UCF-1.02, but its period was impossible to estimate.

So why aren't scientists calling UCF-1.01 a planet?

A measured mass is needed to verify that these objects are planets, but even the most sensitive instruments currently available are unable to measure exoplanet masses this small.

"Despite the lack of a confirmed mass, the team is confident future observations will verify our findings," Harrington said.

Spitzer scientists are eager to see what the future will bring.

"I hope future observations will confirm these exciting results, which show Spitzer may be able to discover exoplanets as small as Mars," said Michael Werner, Spitzer Project Scientist at JPL. "Even after almost nine years in space, Spitzer's observations continue to take us in new and important scientific directions."

Others who contributed to the study include: Nikole Lewis (University of Arizona), Guillaume Montagnier (European Organisation for Astronomical Research in the Southern Hemisphere), Julianne Moses (Space Science Institute), Channon Visscher (Southwest Research Institute) and UCF students Jasmina Blecic, Ryan Hardy, Patricio Cubillos and Christopher Campo.

Stevenson earned his bachelor's degree in physics from Simon Fraser University and a master's degree in astronomy from the University of Western Ontario. In May 2012, he earned his Ph.D in physics (planetary sciences track) from UCF and earned the Order of Pegasus for his high academic and professional achievements as well as his service to the community. He has published articles in Nature and The Astrophysical Journal.

Harrington joined UCF in 2006 and is now an associate professor in the planetary sciences group. Previously he was at Cornell University for almost 10 years. He has multiple degrees from the Massachusetts Institute of Technology. Harrington's research interests include planetary and exoplanetary atmospheres, comet impacts into atmospheres, astronomical data analysis methodology and infrared observing techniques.

Lust is a graduate student in the department of physics at UCF.

Zenaida Kotala | EurekAlert!
Further information:
http://www.ucf.edu

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>