Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCF discovers exoplanet neighbor smaller than Earth

19.07.2012
The University of Central Florida has detected what could be its first planet, only two-thirds the size of Earth and located right around the corner, cosmically speaking, at a mere 33light- years away.

The exoplanet candidate called UCF 1.01, is close to its star, so close it goes around the star in 1.4 days. The planet's surface likely reaches temperatures of more than 1,000 degrees Fahrenheit. The discoverers believe that it has no atmosphere, is only two-thirds the gravity of Earth and that its surface may be volcanic or molten.


UCF scientists have detected what could be its first planet, only two-thirds the size of Earth and located right around the corner, cosmically speaking, at a mere 33 light-years away.

Credit: Artist's Rendering provided by NASA

"We have found strong evidence for a very small, very hot and very close-by planet with the help of the Spitzer Space Telescope," said Kevin Stevenson, a recent Ph.D graduate from the UCF and lead author of the paper, which appears online tomorrow in The Astrophysical Journal. "This discovery is a significant accomplishment for UCF."

Stevenson and his colleagues were studying a hot-Neptune exoplanet, designated GJ 436b, already known to exist around the red-dwarf star GJ 436, when data revealed clues that led them to suspect there could be at least one new planet in that system, perhaps two.

The team noticed slight dips in the amount of infrared light streaming from the star. A review of Spitzer archival data showed that the dips were periodic, suggesting that a planet might be blocking out a small fraction of light as it passed in front of GJ 436, as seen from Earth.

"I could see these faint dips in the starlight and I wanted to determine their source. I knew that if these signals were periodic, they could be from an unknown planet," said Stevenson, who is now a postdoctoral scholar at the University of Chicago.

So he, UCF planetary sciences professor Joseph Harrington and UCF graduate student Nate Lust began looking at the data. They sifted through hundreds of hours of observations collected from Spitzer, the Deep Impact spacecraft, the ground-based Very Large Telescope in Chile and the Canada-France-Hawaii Telescope near the summit of Mauna Kea in Hawaii.

This transit technique, used by a number of telescopes, including NASA's Kepler space telescope, relies on these tiny, partial eclipses to find exoplanet candidates.

Spitzer has performed science work on known exoplanets before, but UCF-1.01 represents the first time Spitzer has made a transit discovery.

With the finding of UCF-1.01, GJ 436 is likely now home to the first multi-transiting-planet system described by a mission other than Kepler. Of the 1,800 stars identified by Kepler as candidates for having planetary systems, only three are verified to contain sub-Earth size exoplanets.

The depth and duration of a transit reveals basic properties of an exoplanet, such as its size and distance from a host star. In UCF-1.01's case, its diameter is estimated at 5,200 miles, or two-thirds that of Earth, placing the world among the smallest on record. The team also noticed hints of yet another potential planet dubbed UCF-1.02, but its period was impossible to estimate.

So why aren't scientists calling UCF-1.01 a planet?

A measured mass is needed to verify that these objects are planets, but even the most sensitive instruments currently available are unable to measure exoplanet masses this small.

"Despite the lack of a confirmed mass, the team is confident future observations will verify our findings," Harrington said.

Spitzer scientists are eager to see what the future will bring.

"I hope future observations will confirm these exciting results, which show Spitzer may be able to discover exoplanets as small as Mars," said Michael Werner, Spitzer Project Scientist at JPL. "Even after almost nine years in space, Spitzer's observations continue to take us in new and important scientific directions."

Others who contributed to the study include: Nikole Lewis (University of Arizona), Guillaume Montagnier (European Organisation for Astronomical Research in the Southern Hemisphere), Julianne Moses (Space Science Institute), Channon Visscher (Southwest Research Institute) and UCF students Jasmina Blecic, Ryan Hardy, Patricio Cubillos and Christopher Campo.

Stevenson earned his bachelor's degree in physics from Simon Fraser University and a master's degree in astronomy from the University of Western Ontario. In May 2012, he earned his Ph.D in physics (planetary sciences track) from UCF and earned the Order of Pegasus for his high academic and professional achievements as well as his service to the community. He has published articles in Nature and The Astrophysical Journal.

Harrington joined UCF in 2006 and is now an associate professor in the planetary sciences group. Previously he was at Cornell University for almost 10 years. He has multiple degrees from the Massachusetts Institute of Technology. Harrington's research interests include planetary and exoplanetary atmospheres, comet impacts into atmospheres, astronomical data analysis methodology and infrared observing techniques.

Lust is a graduate student in the department of physics at UCF.

Zenaida Kotala | EurekAlert!
Further information:
http://www.ucf.edu

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>