Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Astronomers Help Explain Why Fewer Stars Are Born Today Than In The Early Universe

15.02.2010
University of Arizona astronomers have helped solve a mystery surrounding the birth of stars in galaxies that has long puzzled scientists. Their results are published in the Feb. 11 issue of Nature.

"We have known for more than a decade that in the early universe – three to five billion years after the Big Bang or nine to eleven billion years before today – galaxies churned out new stars at a much faster rate than they do now," said Michael Cooper, a postdoctoral Spitzer fellow at the UA's Steward Observatory.

"What we haven't known is whether this was because they somehow formed stars more efficiently or because more raw material – molecular gas and dust – was available," said his colleague Benjamin Weiner, an assistant astronomer at Steward Observatory and one of the co-authors on the paper.

Compared to the average galaxy today, which produces stars at rates equaling about 10 times the mass of our sun per year, the rate of star formation in those same galaxies appears to have been up to 10 times higher when they were younger.

In its efforts to find an answer, the scientific community has tended to turn telescopes toward few, rare, very bright objects, mostly because the instruments available did not allow for the study of less extreme, more typical galaxies. By focusing on the rare, bright objects, the results obtained cast doubts as to whether they are true for the majority of galaxies populating the universe.

"It is a little bit like studying only individuals who are seven feet tall instead of looking at those who fall in a more common range of body height," said Cooper.

He and his coworkers took advantage of more sensitive instruments and refined surveying methods to hone in on more than a dozen ‘normal' galaxies. "Our study is the first to look at the ‘five-foot eight' kinds of galaxies, if you will," Copper said. "Our results therefore are more representative of the typical galaxy out there. For the first time, we are getting a much more complete picture of how galaxies make stars."

New stars form from vast swaths of cold gas and dust that make up large parts of a galaxy. Because the star-forming raw material is not easily detected and data on its distribution are sparse and difficult to obtain, researchers until now had trouble knowing which of the following two scenarios is true: Do typical galaxies still hold sufficient quantities of the ingredients required for star formation, but for some reason their efficiency of making stars has slowed down over cosmic time? Or, do present-day galaxies form fewer stars than they did in the past simply because they have used up most of their gas and dust supplies in the process?

To answer such questions, astronomers have to look not only far out into space, but also far back in time. To do that, they take advantage of a phenomenon known as the Doppler effect.

The Doppler effect is apparent to a motorist waiting at a traffic light when the sound of an oncoming ambulance changes to a slightly lower pitch as it passes through the intersection. This happens because the ambulance truck's speed adds to the speed of the sound waves produced by its siren. As the vehicle passes and moves away, the sound waves take slightly longer to reach the observer's ears.

Because the universe is expanding, galaxies behave a bit like cosmic ambulance trucks: As they move farther away from an observer based here on earth, the light they emit shifts to a slightly lower frequency toward the red in the light spectrum.

Astronomers use this red shift to determine the speed with which a galaxy is receding from earth, allowing them to calculate its distance. In the vastness of the universe, distance equals time: The light we see from a galaxy that is, say, five billion light years away, has been traveling through space for five billion years before it hit the lens of our telescope. Therefore, the galaxy we observe today actually represents that galaxy five billion years in the past.

Cooper and his colleagues used data from an earlier study, in which they had surveyed about 50,000 galaxies, to pick a sample representing an ‘average' population of galaxies. They then pointed various telescopes, among them the Hubble and the Spitzer space telescopes and radio telescope arrays in France and California, toward their study objects.

"By observing those galaxies in the infrared spectrum and measuring their radio frequency emissions, we were able to make their cold gas clouds visible," explained Cooper.

"What we found now is that galaxies like the ancestors of the Milky Way had a much greater supply of gas than the Milky Way does today," said Weiner. "Thus, they have been making stars according to the same laws of physics, but more of them in a given time because they had a greater supply of material."

The research team also obtained images revealing the extent of the star-forming material that permeates galaxies. In one image of a typical galaxy named EGS 1305123, seen as it was a mere 5.5 billion years after the Big Bang, the scientist's observations for the first time show a massive, rotating disc measuring about 60,000 light years across.

The disc, made up of cold gas and dust, is similar in size and structure to that in a typical galaxy, such as our own, the Milky Way, and gives an impression of what it would have looked like at the time, eight and a half billion years ago.

"From our study, we now know that typical galaxies in the early universe contained three to ten times more molecular gas than today," said Cooper, "a strong indication that the rate of star formation has slowed because those galaxies have less raw material available compared to when they were younger, and not because there was some change in efficiency with which they make new stars."

Cooper and Weiner have led the U.S. portion of this large undertaking, which is headed by scientists from the Max-Planck-Institute for Extraterrestrial Physics in Garching, Germany. The paper, "High molecular gas fractions in normal massive star-forming galaxies in the young universe," is published in the Feb. 11 issue of Nature.

This story and accompanying image are online at www.uanews.org/node/30062

Michael Cooper | University of Arizona
Further information:
http://www.arizona.edu
http://www.uanews.org/node/30062

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>