Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of A physicist identifies mysterious core left by exploding star

05.11.2009
University of Alberta physics professor Craig Heinke has solved a mystery that lies 11,000 light years beyond Earth. A supernova (or exploding star), 20 times heavier than our sun blasted apart, leaving behind a small core that has puzzled astronomers since its discovery in 1999.

Heinke and a colleague have identified the 20 kilometre-wide remnant of the supernova as a neutron star. It's the youngest neutron star ever identified, and its atmosphere, a thin layer of carbon, is one of a kind. The supernova event that created the core happened just 330 years ago.

Heinke describes the core as being in its infancy compared to the much older neutron stars scientists have studied. Because of this discovery, researchers now have access to the complete life cycle of a supernova, and will learn more about the role exploding stars play in the makeup of the universe. Most minerals found on Earth are the products of supernovae.

"This discovery helps us understand how neutron stars are born in violent supernova explosions," said Heinke. "This neutron star was born so hot that nuclear fusion happened on its surface, producing a carbon atmosphere just 10 centimeters thick." Heinke is co author of a research paper on the identification of the Cassiopeia A supernova remnant as a neutron star.

It will be published Nov. 5, in Nature.

Great visuals available: The media is welcome to interview Craig Heinke. Follow the link for great visuals of the neutron star. The image was captured by NASA's Chandra X-Ray Observatory. The neutron star is the blue dot at the centre of the picture. http://www.phys.ualberta.ca/~akale/heinke

Brian Murphy | EurekAlert!
Further information:
http://www.ualberta.ca
http://www.phys.ualberta.ca/~akale/heinke

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>