Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of A physicist identifies mysterious core left by exploding star

05.11.2009
University of Alberta physics professor Craig Heinke has solved a mystery that lies 11,000 light years beyond Earth. A supernova (or exploding star), 20 times heavier than our sun blasted apart, leaving behind a small core that has puzzled astronomers since its discovery in 1999.

Heinke and a colleague have identified the 20 kilometre-wide remnant of the supernova as a neutron star. It's the youngest neutron star ever identified, and its atmosphere, a thin layer of carbon, is one of a kind. The supernova event that created the core happened just 330 years ago.

Heinke describes the core as being in its infancy compared to the much older neutron stars scientists have studied. Because of this discovery, researchers now have access to the complete life cycle of a supernova, and will learn more about the role exploding stars play in the makeup of the universe. Most minerals found on Earth are the products of supernovae.

"This discovery helps us understand how neutron stars are born in violent supernova explosions," said Heinke. "This neutron star was born so hot that nuclear fusion happened on its surface, producing a carbon atmosphere just 10 centimeters thick." Heinke is co author of a research paper on the identification of the Cassiopeia A supernova remnant as a neutron star.

It will be published Nov. 5, in Nature.

Great visuals available: The media is welcome to interview Craig Heinke. Follow the link for great visuals of the neutron star. The image was captured by NASA's Chandra X-Ray Observatory. The neutron star is the blue dot at the centre of the picture. http://www.phys.ualberta.ca/~akale/heinke

Brian Murphy | EurekAlert!
Further information:
http://www.ualberta.ca
http://www.phys.ualberta.ca/~akale/heinke

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>