Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twin Keck Telescopes Probe Dual Dust Disks

29.09.2009
Astronomers using the twin 10-meter telescopes at the W. M. Keck Observatory in Hawaii have explored one of the most compact dust disks ever resolved around another star. If placed in our own solar system, the disk would span about four times Earth’s distance from the sun, reaching nearly to Jupiter’s orbit. The compact inner disk is accompanied by an outer disk that extends hundreds of times farther.

The centerpiece of the study is the Keck Interferometer Nuller (KIN), a device that combines light captured by both of the giant telescopes in a way that allows researchers to study faint objects otherwise lost in a star’s brilliant glare. "This is the first compact disk detected by the KIN, and a demonstration of its ability to detect dust clouds a hundred times smaller than a conventional telescope can see," said Christopher Stark, an astronomer at NASA’s Goddard Space Flight Center in Greenbelt, Md., who led the research team.

By merging the beams from both telescopes in a particular way, the KIN essentially creates a precise blind spot that blocks unwanted starlight but allows faint adjacent signals – such as the light from dusty disks surrounding the star – to pass through.

In April 2007, the team targeted 51 Ophiuchi, a young, hot, B-type star about 410 light-years away in the constellation Ophiuchus. Astronomers suspect the star and its disks represent a rare, nearby example of a young planetary system just entering the last phase of planet formation, although it is not yet known whether planets have formed there.

"Our new observations suggest 51 Ophiuchi is a beautiful protoplanetary system with a cloud of dust from comets and asteroids extremely close to its parent star," said Marc Kuchner, an astronomer at Goddard and a member of the research team.

Planetary systems are surprisingly dusty places. Much of the dust in our solar system forms inward of Jupiter's orbit, as comets crumble near the sun and asteroids of all sizes collide. This dust reflects sunlight and sometimes can be seen as a wedge-shaped sky glow – called the zodiacal light – before sunrise or after sunset.

Dusty disks around other stars that arise through the same processes are called "exozodiacal" clouds. "Our study shows that 51 Ophiuchi’s disk is more than 100,000 times denser than the zodiacal dust in the solar system," explained Stark." This suggests that the system is still relatively young, with many colliding bodies producing vast amounts of dust."

To decipher the structure and make-up of the star’s dust clouds, the team combined KIN observations at multiple wavelengths with previous studies from NASA’s Spitzer Space Telescope and the European Southern Observatory’s Very Large Telescope Interferometer in Chile.

The inner disk extends about 4 Astronomical Units (AU) from the star and rapidly tapers off. (One AU is Earth’s average distance from the sun, or 93 million miles.) The disk’s infrared color indicates that it mainly harbors particles with sizes of 10 micrometers – smaller than a grain of fine sand – and larger.

The outer disk begins roughly where the inner disk ends and reaches about 1,200 AU. Its infrared signature shows that it mainly holds grains just one percent the size of those in the inner disk – similar in size to the particles in smoke. Another difference: The outer disk appears more puffed up, extending farther away from its orbital plane than the inner disk.

"We suspect that the inner disk gives rise to the outer disk," explained Kuchner. As asteroid and comet collisions produce dust, the larger particles naturally spiral toward the star. But pressure from the star’s light pushes smaller particles out of the system. This process, which occurs in our own solar system, likely operates even better around 51 Ophiuchi, a star 260 times more luminous than the sun.

The findings appear in the October 1 issue of The Astrophysical Journal.

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>