Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning metal black more than just a novelty

10.12.2009
University of Rochester scientists discover that laser technique used to change the colors of metals could have important implications for medicine

University of Rochester optics professor Chunlei Guo made headlines in the past couple of years when he changed the color of everyday metals by scouring their surfaces with precise, high-intensity laser bursts.

Suddenly it was possible to make sheets of golden tungsten, or black aluminum.

A recent discovery in Guo's lab has shown that, beyond the aesthetic opportunities in his find lie some very powerful potential uses, like diagnosing some diseases with unprecedented ease and precision.

Along with his research assistant, Anatoliy Vorobyev, Guo has discovered that the altered metals can detect electromagnetic radiation with frequencies in the terahertz range (also known as T-rays), which have been challenging, if not impossible, to detect prior to his discovery.

"When we turned metals black, we knew that they became highly absorptive in the visible wavelength range because the altered metals appear pitch black to the eye. Here, we experimentally demonstrated that the enhanced absorption extends well into the far infrared and terahertz frequencies," Guo said.

With wavelengths shorter than microwaves, but longer than infrared rays, T-rays occupy a place in the electromagnetic spectrum that is capable of exciting rotational and vibrational states of organic compounds, like pathogens. This quality could allow doctors and biomedical researchers to get previously impossible glimpses of diseases on the molecular level.

In addition, unlike X-rays, T-rays are non-ionizing, which means that people who are exposed to them don't risk the possible tissue damage that can result from X-rays.

University of California, Berkeley, bioengineering Professor Thomas Budinger says terahertz radiation is like much-higher-frequency radar, except that it theoretically can allow its users to see intricate details of tissue architecture, on the scale of one-thousandth of a millimeter and smaller, instead of large objects like airplanes and boats.

"Terahertz electromagnetic radiation has the capability to interrogate tissues at the cellular level. If applied within microns of the subject of interest, this form of imaging has the theoretical capability to detect properties of molecular assemblages that could be attributes of disease states," Budinger said.

What made terahertz radiation so difficult to detect in the past was that typical materials do not readily absorb that frequency. However, after undergoing Guo's femtosecond structuring technique, metals become over 30 times more absorptive.

The key to creating the black metal in terahertz is a beam of ultra-brief, ultra-intense laser pulses called femtosecond laser pulses. The laser burst lasts less than a quadrillionth of a second. To get a grasp of that kind of speed, consider that a femtosecond is to a second what a second is to about 32 million years. During its brief burst, Guo's laser unleashes as much power as the entire grid of North America onto a spot the size of a needle point. That intense blast forces the surface of the metal to undergo some dramatic changes and makes them extremely efficient in absorbing terahertz radiation.

About the University of Rochester
The University of Rochester is one of the nation’s leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by the Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, Schools of Medicine and Nursing, and the Memorial Art Gallery.

Alan Blank | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>