Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tripping the fluid dynamic: The physics of Jackson Pollock

30.06.2011
Physicist, art historian and mathematician probe the science of the unconventional American master

American artist Jackson Pollock's paintings often clashed with the rules of the art world. But they couldn't defy the laws of physics, according to a multidisciplinary team of researchers from Boston College and Harvard who give quantitative form to Pollock's methods and genius in the latest edition of the journal Physics Today.

Quantitative analysis is a phrase few would associate with Pollock, the abstract expressionist who during the 1940s and 50s adopted the method of pouring paint onto canvas in order to convey his artistic vision in an interplay of drizzles, drips and splashes.

But physicist Andrzej Herczynski and art historian Claude Cernuschi of Boston College and mathematician L. Mahadevan of Harvard brought their respective expertise together to develop a quantitative portrait of Pollock's techniques, showing Pollock as an intuitive master of laws that govern the flow of liquids under gravity.

Under a scientific lens, Pollock's drizzles, drips and splashes reveal the workings of physical phenomena known as jets, drops and sheets. Each is governed by the laws of fluid dynamics, which Pollock exploited through careful technique and manipulating the thickness of his pigments and paints with water and solvents, according to the researchers.

"When Pollock is creating his pieces, he is enlisting gravity as a participant – as a co-conspirator," said Cernuschi, a professor of art history. "He has to understand how pigment is going to behave under the laws of gravity. He has to anticipate what is going to happen and work accordingly. There is both spontaneity and control, just as there is in the improvisation of a jazz musician. In order to understand what is taking place with Pollock, it's essential to understand the laws of physics and the dynamics at play under the laws of gravity."

There has long been speculation about the role of fluid dynamics in Pollock's work, but never before an explicit quantitative exploration of Pollock's primary methodology – painting with jets, or continuous flows of paint – and his less frequent use of drops and perhaps sheets, said Herczynski, laboratory director and research associate professor of physics at BC.

Herczynski and Mahadevan, Harvard's Lola England de Valpine Professor of Applied Mathematics and a professor of biology and physics as well, looked at Pollock's techniques and the physical aspects of paint on canvas in order to understand the forces at play. Their calculations describe Pollock's lifting and dispensing of paint in terms of paint load volume, viscosity, flow rates, gravity, and other factors.

Pollock worked by loading a stick or trowel with a far greater amount of paint than a brush holds during conventional easel painting. He released a jet of liquid to the canvas placed on the floor below. Pollock's physical technique – captured in still photographs and movies of the artist at work – reflect his efforts to control liquid-jet dynamics such as fluid instability called coiling, the circular motion of the tail of a thinning paint jet, similar to the way a stream of syrup "coils" on a pancake, the authors note. While Pollock may have instinctively understood how to control these forces, it would be years later before scientists came to fully understand them in theory and practice.

"By pouring paint in this continuous jet fashion or by dripping it, he incorporated physics into the process of painting itself," said Herczynski. "To the degree that he did and to the degree he varied his materials – by density or viscosity – he was experimenting in fluid dynamics, although his aim was not to describe the physics, but to produce a certain aesthetic effect."

Ed Hayward | EurekAlert!
Further information:
http://www.bc.edu

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>