Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tripping the fluid dynamic: The physics of Jackson Pollock

Physicist, art historian and mathematician probe the science of the unconventional American master

American artist Jackson Pollock's paintings often clashed with the rules of the art world. But they couldn't defy the laws of physics, according to a multidisciplinary team of researchers from Boston College and Harvard who give quantitative form to Pollock's methods and genius in the latest edition of the journal Physics Today.

Quantitative analysis is a phrase few would associate with Pollock, the abstract expressionist who during the 1940s and 50s adopted the method of pouring paint onto canvas in order to convey his artistic vision in an interplay of drizzles, drips and splashes.

But physicist Andrzej Herczynski and art historian Claude Cernuschi of Boston College and mathematician L. Mahadevan of Harvard brought their respective expertise together to develop a quantitative portrait of Pollock's techniques, showing Pollock as an intuitive master of laws that govern the flow of liquids under gravity.

Under a scientific lens, Pollock's drizzles, drips and splashes reveal the workings of physical phenomena known as jets, drops and sheets. Each is governed by the laws of fluid dynamics, which Pollock exploited through careful technique and manipulating the thickness of his pigments and paints with water and solvents, according to the researchers.

"When Pollock is creating his pieces, he is enlisting gravity as a participant – as a co-conspirator," said Cernuschi, a professor of art history. "He has to understand how pigment is going to behave under the laws of gravity. He has to anticipate what is going to happen and work accordingly. There is both spontaneity and control, just as there is in the improvisation of a jazz musician. In order to understand what is taking place with Pollock, it's essential to understand the laws of physics and the dynamics at play under the laws of gravity."

There has long been speculation about the role of fluid dynamics in Pollock's work, but never before an explicit quantitative exploration of Pollock's primary methodology – painting with jets, or continuous flows of paint – and his less frequent use of drops and perhaps sheets, said Herczynski, laboratory director and research associate professor of physics at BC.

Herczynski and Mahadevan, Harvard's Lola England de Valpine Professor of Applied Mathematics and a professor of biology and physics as well, looked at Pollock's techniques and the physical aspects of paint on canvas in order to understand the forces at play. Their calculations describe Pollock's lifting and dispensing of paint in terms of paint load volume, viscosity, flow rates, gravity, and other factors.

Pollock worked by loading a stick or trowel with a far greater amount of paint than a brush holds during conventional easel painting. He released a jet of liquid to the canvas placed on the floor below. Pollock's physical technique – captured in still photographs and movies of the artist at work – reflect his efforts to control liquid-jet dynamics such as fluid instability called coiling, the circular motion of the tail of a thinning paint jet, similar to the way a stream of syrup "coils" on a pancake, the authors note. While Pollock may have instinctively understood how to control these forces, it would be years later before scientists came to fully understand them in theory and practice.

"By pouring paint in this continuous jet fashion or by dripping it, he incorporated physics into the process of painting itself," said Herczynski. "To the degree that he did and to the degree he varied his materials – by density or viscosity – he was experimenting in fluid dynamics, although his aim was not to describe the physics, but to produce a certain aesthetic effect."

Ed Hayward | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>