Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Triplet threat from the sun

21.10.2014

Certain peptides exposed to UV radiation transition to more reactive triplet quantum states instead of immediately breaking down

The most obvious effects of too much sun exposure are cosmetic, like wrinkled and rough skin. Some damage, however, goes deeper—ultraviolet light can damage DNA and cause proteins in the body to break down into smaller, sometimes harmful pieces that may also damage DNA, increasing the risk of skin cancer and cataracts. Understanding the specific pathways by which this degradation occurs is an important step in developing protective mechanisms against it.


This is the initial UV excitation leading to photofragmentation.

Credit: Michael Kamrath

Researchers from the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland have shown that certain peptides (small proteins) degrade under UV light by first passing through a triplet quantum state, a reactive arrangement that can cause greater damage than fragmentation alone.

Their results, described in a paper appearing this week in The Journal of Chemical Physics, from AIP Publishing, explore this pathway of protein degradation and could facilitate the development of better UV protection mechanisms.

The researchers took gas-phase peptides containing tyrosine or phenylalanine, light-absorbing amino acids found throughout our bodies, and subjected them to ultraviolet laser radiation. Then, they used ultraviolet-infrared spectroscopy to examine the resulting structural changes over time. They found that instead of immediately degrading once excited, some of the molecules formed intermediate triplet states.

Normally, electron spins are paired—if two electrons are present, one spin points one direction and the other points the opposite direction. But under certain conditions, the spin of one of the electrons can flip so that they both point in the same direction. This arrangement is known as a triplet state.

Because electronic configurations can affect how a molecule will react, knowing that it passes through a triplet state can provide additional insight into the potential consequences of photodamage for these molecules.

"Triplet states are long-lived and can be involved in harmful chemical reactions," said chemical physicist Aleksandra Zabuga, an author of the new paper. "Long-lived" is relative—they still only last from microseconds to milliseconds—but it does give them a greater opportunity to do damage.

"During that time the triplet species may transfer their energy to nearby oxygen and produce highly reactive singlet oxygen or other free radicals. These radicals can in turn move around the cell and cause DNA damage that is much more dangerous than the fragmentation of peptides," she said.

A number of other research groups have studied UV fragmentation in solution and also report the presence of triplet states. Peptides are less likely to fragment in this environment, however, because they can interact with the surrounding molecules and deactivate through alternative mechanisms, mediating the damage. In addition, pigments like melanin in our skin and kynurenine in our eyes reduce the amount of UV radiation that reaches cells.

"It is interesting to consider the fact that all of these protection mechanisms are external to the peptide. In other words, peptides do not seem to have very efficient means of protecting themselves," said Zabuga.

In the future, the researchers hope to examine the impact of the local environment on light-induced fragmentation. For instance, it is possible that nearby water molecules or additional amino acids on the same peptide chain could interact with the triplet state and alter the fragmentation mechanism—an important consideration in real-world systems.

###

The article, "Fragmentation mechanism of UV-excited peptides in the gas phase," is authored by Aleksandra V. Zabuga, Michael Z. Kamrath, Oleg V. Boyarkin, and Thomas R. Rizzo. It will be published in The Journal of Chemical Physics on October 21, 2014 (DOI: 10.1063/1.4897158). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/jcp/141/14/10.1063/1.4897158

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See: http://jcp.aip.org

Jason Socrates Bardi | Eurek Alert!
Further information:
http://www.aip.org

Further reports about: Chemical Physics DNA Electrons Triplet amino acids damage degradation fragmentation peptides physics radicals reactive skin

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>