Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Triplet threat from the sun


Certain peptides exposed to UV radiation transition to more reactive triplet quantum states instead of immediately breaking down

The most obvious effects of too much sun exposure are cosmetic, like wrinkled and rough skin. Some damage, however, goes deeper—ultraviolet light can damage DNA and cause proteins in the body to break down into smaller, sometimes harmful pieces that may also damage DNA, increasing the risk of skin cancer and cataracts. Understanding the specific pathways by which this degradation occurs is an important step in developing protective mechanisms against it.

This is the initial UV excitation leading to photofragmentation.

Credit: Michael Kamrath

Researchers from the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland have shown that certain peptides (small proteins) degrade under UV light by first passing through a triplet quantum state, a reactive arrangement that can cause greater damage than fragmentation alone.

Their results, described in a paper appearing this week in The Journal of Chemical Physics, from AIP Publishing, explore this pathway of protein degradation and could facilitate the development of better UV protection mechanisms.

The researchers took gas-phase peptides containing tyrosine or phenylalanine, light-absorbing amino acids found throughout our bodies, and subjected them to ultraviolet laser radiation. Then, they used ultraviolet-infrared spectroscopy to examine the resulting structural changes over time. They found that instead of immediately degrading once excited, some of the molecules formed intermediate triplet states.

Normally, electron spins are paired—if two electrons are present, one spin points one direction and the other points the opposite direction. But under certain conditions, the spin of one of the electrons can flip so that they both point in the same direction. This arrangement is known as a triplet state.

Because electronic configurations can affect how a molecule will react, knowing that it passes through a triplet state can provide additional insight into the potential consequences of photodamage for these molecules.

"Triplet states are long-lived and can be involved in harmful chemical reactions," said chemical physicist Aleksandra Zabuga, an author of the new paper. "Long-lived" is relative—they still only last from microseconds to milliseconds—but it does give them a greater opportunity to do damage.

"During that time the triplet species may transfer their energy to nearby oxygen and produce highly reactive singlet oxygen or other free radicals. These radicals can in turn move around the cell and cause DNA damage that is much more dangerous than the fragmentation of peptides," she said.

A number of other research groups have studied UV fragmentation in solution and also report the presence of triplet states. Peptides are less likely to fragment in this environment, however, because they can interact with the surrounding molecules and deactivate through alternative mechanisms, mediating the damage. In addition, pigments like melanin in our skin and kynurenine in our eyes reduce the amount of UV radiation that reaches cells.

"It is interesting to consider the fact that all of these protection mechanisms are external to the peptide. In other words, peptides do not seem to have very efficient means of protecting themselves," said Zabuga.

In the future, the researchers hope to examine the impact of the local environment on light-induced fragmentation. For instance, it is possible that nearby water molecules or additional amino acids on the same peptide chain could interact with the triplet state and alter the fragmentation mechanism—an important consideration in real-world systems.


The article, "Fragmentation mechanism of UV-excited peptides in the gas phase," is authored by Aleksandra V. Zabuga, Michael Z. Kamrath, Oleg V. Boyarkin, and Thomas R. Rizzo. It will be published in The Journal of Chemical Physics on October 21, 2014 (DOI: 10.1063/1.4897158). After that date, it can be accessed at:


The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See:

Jason Socrates Bardi | Eurek Alert!
Further information:

Further reports about: Chemical Physics DNA Electrons Triplet amino acids damage degradation fragmentation peptides physics radicals reactive skin

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>