Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trapping giant Rydberg atoms for faster quantum computers

07.05.2010
In an achievement that could help enable fast quantum computers, University of Michigan physicists have built a better Rydberg atom trap. Rydberg atoms are highly excited, nearly-ionized giants that can be thousands of times larger than their ground-state counterparts.

As a result of their size, interactions between Rydberg atoms can be roughly a million times stronger than between regular atoms. This is why they could serve as faster quantum circuits, said Georg Raithel, associate chair and professor in the Department of Physics. Quantum computers could solve problems too complicated for conventional computers. Many scientists believe that the future of computation lies in the quantum realm.

A paper on this research is published in the current edition of Physical Review Letters. The work will be presented at the American Physical Society's Division of Atomic, Molecular and Optical Physics meeting in late May.

Raithel's team trapped the atoms in what's called an optical lattice—a crate made of interfering laser beams.

"The optical lattice is better than any other Rydberg atom trap for quantum information processing or high-precision spectroscopy," Raithel said. "Compared with other traps, optical lattices minimize energy level shifts in the atoms, which is important for these applications."

Raithel and physics doctoral students Kelly Younge and Sarah Anderson started with ground-state atoms of the soft metal rubidium. At room temperature, the atoms whiz around at the speed of sound, about 300 meters per second. The researchers hit them with lasers to cool and slow them to 10 centimeters per second.

"That's about the speed of a mosquito," Younge said. "Cooling lasers combined with a magnetic field allows us to trap the ground-state atoms. Then we excite the atoms into Rydberg states."

In a rubidium atom, just one electron occupies the outer valence shell. With precisely tuned lasers, the researchers excited this electron so that it moved 100 times farther away from the nucleus of the atom, which classified it as a Rydberg atom. That valence electron in this case is so far away from the nucleus that it behaves almost as if it's a free electron.

To trap the Rydberg atoms, the researchers took advantage of what's called the "ponderomotive force" that allows them to secure a whole atom by holding fast to one electron—the sole valence shell particle in the rubidium Rydberg atoms. The optical lattice, formed with intense, interfering laser beams, is what provides the ponderomotive force.

"The laser field holds on to the electron, which behaves almost as if it were free, but the residual weak atomic binding force still holds the atom together. In effect, the entire atom is trapped by the lasers," Raithel said.

The physicists used a technique called "microwave spectroscopy," to determine how the lattice affected the Rydberg atoms, and in general how the atoms behaved in the trap.

"Essentially, we could track the motion of the atoms during the experiment. We could tell if the atoms were sitting in the bottom of a well in the electromagnetic field, or if they were roaming over many wells. In this way, we could optimize the performance of the trap," Younge said.

The paper is called "State-dependent Energy Shifts of Rydberg Atoms in a Ponderomotive Optical Lattice."

This research is funded by the National Science Foundation and the National Defense Science and Engineering Graduate Fellowship Program.

Contact: Nicole Casal Moore
Phone: (734) 647-7087
Or
Contact: Carol Rabuck
Phone: (734) 763-2588

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: Science TV Trapping laser beam magnetic field optical data optical lattice

More articles from Physics and Astronomy:

nachricht Nanomagnetism in X-ray Light
23.03.2017 | Max-Planck-Institut für Intelligente Systeme

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>