Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tooling up ExoMars

18.01.2010
ESA and NASA are inviting scientists from across the world to propose instruments for their joint Mars mission, the ExoMars Trace Gas Orbiter.
Scheduled for launch in 2016, the spacecraft will focus on understanding the rarest constituents of the martian atmosphere, including the mysterious methane that could signal life on Mars.

Establishing whether life ever existed, or is still active on Mars today, is one of the outstanding scientific quests of our time. Both missions in the ExoMars programme will address this important goal.

The first spacecraft is the Trace Gas Orbiter, which ESA will build and NASA will launch.

Today, both space agencies issued an Announcement of Opportunity inviting scientists to propose instruments to be carried on the mission. Once all proposals are in, they will be evaluated and the winning teams will be tasked with building the actual hardware.

... more about:
»ESA »ExoMars »Mars »NASA »Orbiter »Tooling

A Joint Instrument Definition Team has identified a model payload based on current technology, but turning that blueprint into reality is now the job of the scientific community. “We are open to all instrumental proposals so long as they help us achieve our scientific objectives,” says Jorge Vago, ESA ExoMars Project Scientist.

The priority for this mission is to map trace gases in the atmosphere of Mars, distinguishing individual chemical species down to concentrations of just a few parts per billion. Of these gases, one in particular attracts special attention: methane. Discovered on Mars in 2003, it happens to be a possible ‘biomarker’, a gas that is readily produced by biological activity. Understanding whether the methane comes from life or from geological and volcanic processes takes precedence. “The methane is the anchor point around which the science is to be constructed,” says Vago.

Adding to the mystery is that methane was found to be concentrated in just three locations on Mars, and then disappeared much faster from the atmosphere than scientists were expecting. This points to an unknown destruction mechanism much more powerful than any known on Earth. It may also indicate a much faster creation process to have produced such large quantities of the gas in the first place.

Jorge Vago | alfa
Further information:
http://www.esa.int
http://www.esa.int/esaSC/SEMGB7MJ74G_index_0.html

Further reports about: ESA ExoMars Mars NASA Orbiter Tooling

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>