Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

THUNDER & LIGHTNING! Thunderstorm on Saturn Releases a Septillion Joules of Energy

07.07.2011
The largest and most intense storm of the last 20 years was recently discovered on the planet Saturn. Initial measurement data on this thunderstorm is published today as the cover story of the journal NATURE.

This is a further highlight for an Austrian Science Fund FWF project which has been running for two years. The project focuses on analysing data from NASA´s space probe Cassini - however, for the latest storm a global network of amateur astronomers was also called up for duty. It was thus possible to calculate that the storm has so far released a septillion joules of energy. Furthermore, the measurements provide support for a hypothesis which predicts that Saturn´s storms have a seasonal dependence.


Not a fine day on Saturn: a gigantic storm is developing in the northern hemisphere. © NASA/JPL/SSI

Other planets have freak weather, too. Saturn´s quirks are being investigated by the Space Research Institute of the Austrian Academy of Sciences. A current project of the Austrian Science Fund FWF is concentrating on measuring Saturn´s atmospheric electricity. When the project began in August 2009, the plan was actually to analyse an older thunderstorm in more detail. But then came December 5, 2010.

LIGHTNING ACTION
On that day, an instrument to measure radio and plasma waves aboard NASA´s probe Cassini detected the first lightning flashes of a storm which was forming in Saturn´s northern hemisphere. What nobody knew then was that this storm would later turn out to be the largest storm which Cassini had ever measured on Saturn, because the first photos by Cassini´s Imaging Science Subsystem initially showed a small, bright cloud. Even these photographs had been taken by chance, as the head of the FWF project and lead author of the current Nature publication, Dr. Georg Fischer, explains: "It is not possible to point this camera as the mood takes you. It was pure chance that it happened to be pointing in the right direction at the right time. Since it would take a while to analyse the photos, I immediately sent out an appeal to the global network of amateur astronomers. I asked them to please keep an eye on the thundercloud. A real lightning action, so to speak."

The rapid reaction was worth the effort, making it possible to follow the dramatic development of the storm which Dr. Fischer explains as follows: "Three weeks after its discovery, the storm already extended over more than 10,000 kilometres. Two months later it encircled the whole planet. And now, seven months after the discovery, it covers an area of four billion square kilometres. That´s eight times the surface area of the Earth."

FAST AS LIGHTNING
A crucial part of Dr. Fischer´s project is the measurement of lightning activity with the aid of the radio waves emitted. These radio waves, called Saturn Electrostatic Discharges (SEDs), usually occur as short, individual emissions. Not so in this case. The sequence of individual flashes is so rapid that almost continuous radio emission is measured. There are up to ten flashes per second. Taken together with this lightning activity, the storm achieved a total energy of a septillion - 10 to the power of 24 - joules in the first three months of its existence. This corresponds to the total annual solar energy reaching the Earth.

For Dr. Fischer the dimensions of the storm are just as impressive as the timing and the localisation of the storm: "Cassini has been observing Saturn since 2004, and during this time, thunderstorms have only been observed in the southern hemisphere. A Saturn year lasts 29.5 Earth years, and August 2009 saw the start of Saturn´s spring. I had put forward the hypothesis that this would mean that the thunderstorms would change to the northern hemisphere. The fact that it only took such a short time to gain support for this hypothesis has surprised me. This is a successful conclusion to our current FWF project."

Scientific contact:
Dr. Georg Fischer
Space Research Institute
Austrian Academy of Sciences
Schmiedlstraße 6
8042 Graz, Austria
T +43 / 316 / 4120 - 664
M +43 / 699 / 12068 - 896
E georg.fischer@oeaw.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W www.fwf.ac.at
Copy Editing and Distribution:
PR&D - Public Relations
for Research & Education
Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Dr. Katharina Schnell | PR&D
Further information:
http://www.fwf.ac.at/en/

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>