Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three Magnetic States for Each Hole

03.02.2017

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in order to program its magnetic properties. His colleagues from the National University in Singapore produced the grid using a photolithographic process similar to that currently used in chip manufacture.


Researchers at the HZDR have calculated that the specific layout of four holes ("antidots") in a layer of cobalt will accommodate 15 different combinations for programming.

HZDR

Approximately 250 nanometers sized holes, so-called antidots, were created at regular intervals – with interspaces of only 150 nanometers – in the cobalt layer. In order to be able to stably program it, the Singapore experts followed the Dresden design, which specified a metal layer thickness of approximately 50 nanometers.

At these dimensions the cobalt antidot grid displayed interesting properties: Dr. Bali’s team discovered that with the aid of an externally applied magnetic field three distinct magnetic states around each hole could be configured. The scientists called these states "G", "C" and "Q". Dr. Bali: "Antidots are now in the international research spotlight. By optimizing the antidot geometry we were able to show that the spins, or the magnetic moments of the electrons, could be reliably programmed around the holes."

Building blocks for future logic

Since the individually programmable holes are situated in a magnetic metal layer, the grid geometry has potential use in computers that would work with spin-waves instead of electric current. "Spin-waves are similar to the so-called Mexican waves you see in a football stadium. The wave propagates through the stadium, but the individual fans, in our case the electrons, stay seated", explains Dr. Bali. Logic chips utilizing such spin-waves would use far less power than today’s processors, because no electrical current is involved.

Many magnetic states can be realized in the perforated grid so that the spin-waves can, for example, be assigned specific directions. This could allow for a higher processing speed in future logic chips. "Our perforated grids could also operate as components for future circuits working with spin-waves“, estimates Dr. Bali.

Doctoral candidate, Tobias Schneider, is now investigating the dynamics developed by the spin-waves in such perforated grids. Among other aspects he is participating in the development of special computer programs making possible the complex calculation of the magnetic states in perforated grids.

Publication: T. Schneider, R. Bali u. a.: „Programmability of Co-antidot Lattices of Optimized Geometry“, Scientific Reports Nr. 7, Article number: 41157 (2017), DOI: 10.1038/srep41157

Further information:
Dr. Rantej Bali | Tobias Schneider
Phone +49 351 260-2919 | -2689
Email: r.bali@hzdr.de | t.schneider@hzdr.de

Media contact:
Dr. Christine Bohnet | Press officer & head HZDR communications
Phone +49 351 260-2450 | Email: c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden

Weitere Informationen:

https://www.hzdr.de/presse/antidots

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>