Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three Magnetic States for Each Hole

03.02.2017

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in order to program its magnetic properties. His colleagues from the National University in Singapore produced the grid using a photolithographic process similar to that currently used in chip manufacture.


Researchers at the HZDR have calculated that the specific layout of four holes ("antidots") in a layer of cobalt will accommodate 15 different combinations for programming.

HZDR

Approximately 250 nanometers sized holes, so-called antidots, were created at regular intervals – with interspaces of only 150 nanometers – in the cobalt layer. In order to be able to stably program it, the Singapore experts followed the Dresden design, which specified a metal layer thickness of approximately 50 nanometers.

At these dimensions the cobalt antidot grid displayed interesting properties: Dr. Bali’s team discovered that with the aid of an externally applied magnetic field three distinct magnetic states around each hole could be configured. The scientists called these states "G", "C" and "Q". Dr. Bali: "Antidots are now in the international research spotlight. By optimizing the antidot geometry we were able to show that the spins, or the magnetic moments of the electrons, could be reliably programmed around the holes."

Building blocks for future logic

Since the individually programmable holes are situated in a magnetic metal layer, the grid geometry has potential use in computers that would work with spin-waves instead of electric current. "Spin-waves are similar to the so-called Mexican waves you see in a football stadium. The wave propagates through the stadium, but the individual fans, in our case the electrons, stay seated", explains Dr. Bali. Logic chips utilizing such spin-waves would use far less power than today’s processors, because no electrical current is involved.

Many magnetic states can be realized in the perforated grid so that the spin-waves can, for example, be assigned specific directions. This could allow for a higher processing speed in future logic chips. "Our perforated grids could also operate as components for future circuits working with spin-waves“, estimates Dr. Bali.

Doctoral candidate, Tobias Schneider, is now investigating the dynamics developed by the spin-waves in such perforated grids. Among other aspects he is participating in the development of special computer programs making possible the complex calculation of the magnetic states in perforated grids.

Publication: T. Schneider, R. Bali u. a.: „Programmability of Co-antidot Lattices of Optimized Geometry“, Scientific Reports Nr. 7, Article number: 41157 (2017), DOI: 10.1038/srep41157

Further information:
Dr. Rantej Bali | Tobias Schneider
Phone +49 351 260-2919 | -2689
Email: r.bali@hzdr.de | t.schneider@hzdr.de

Media contact:
Dr. Christine Bohnet | Press officer & head HZDR communications
Phone +49 351 260-2450 | Email: c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden

Weitere Informationen:

https://www.hzdr.de/presse/antidots

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>