Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The World’s First Photonic Router

15.07.2014

Weizmann Institute scientists take another step down the long road toward quantum computers

Weizmann Institute scientists have demonstrated for the first time a photonic router – a quantum device based on a single atom that enables routing of single photons by single photons. This achievement, as reported in Science magazine, is another step toward overcoming the difficulties in building quantum computers.


Illustration of the photonic router the Weizmann Institute scientists created. At the center is the single atom (orange) that routes photons (yellow) in different directions

At the core of the device is an atom that can switch between two states. The state is set just by sending a single particle of light – or photon – from the right or the left via an optical fiber. The atom, in response, then reflects or transmits the next incoming photon, accordingly. For example, in one state, a photon coming from the right continues on its path to the left, whereas a photon coming from the left is reflected backwards, causing the atomic state to flip.

In this reversed state, the atom lets photons coming from the left continue in the same direction, while any photon coming from the right is reflected backwards, flipping the atomic state back again. This atom-based switch is solely operated by single photons – no additional external fields are required.

“In a sense, the device acts as the photonic equivalent to electronic transistors, which switch electric currents in response to other electric currents,” says Dr. Barak Dayan, head of the Weizmann Institute’s Quantum Optics group, including Itay Shomroni, Serge Rosenblum, Yulia Lovsky, Orel Bechler and Gabriel Guendleman of the Chemical Physics Department in the Faculty of Chemistry. The photons are not only the units comprising the flow of information, but also the ones that control the device. 

This achievement was made possible by the combination of two state-of-the-art technologies. One is the laser cooling and trapping of atoms. The other is the fabrication of chip-based, ultra-high quality miniature optical resonators that couple directly to the optical fibers. Dayan’s lab at the Weizmann Institute is one of a handful worldwide that has mastered both these technologies. 

The main motivation behind the effort to develop quantum computers is the quantum phenomenon of superposition, in which particles can exist in many states at once, potentially being able to process huge amounts of data in parallel.

Yet superposition can only last as long as nothing observes or measures the system otherwise it collapses to a single state. Therefore, photons are the most promising candidates for communication between quantum systems as they do not interact with each other at all, and interact very weakly with other particles.

Dayan: “The road to building quantum computers is still very long, but the device we constructed demonstrates a simple and robust system, which should be applicable to any future architecture of such computers. In the current demonstration a single atom functions as a transistor – or a two-way switch – for photons, but in our future experiments, we hope to expand the kinds of devices that work solely on photons, for example new kinds of quantum memory or logic gates.” 

Dr. Barak Dayan’s research is supported by the Benoziyo Endowment Fund for the Advancement of Science. Dr. Dayan is the incumbent of the Joseph and Celia Reskin Career Development Chair.

Yivsam Azgad | Eurek Alert!
Further information:
http://wis-wander.weizmann.ac.il/the-world%E2%80%99s-first-photonic-router#.U8VCaGGKDct

Further reports about: Photonic Physics Weizmann couple fiber interact photons quantum computers state-of-the-art

More articles from Physics and Astronomy:

nachricht The dark side of the fluffiest galaxies
24.05.2016 | Instituto de Astrofísica de Canarias (IAC)

nachricht Astronomers confirm faintest early-universe galaxy ever seen
24.05.2016 | University of California - Los Angeles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>