Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The physics of ocean undertow


Small forces make a big difference in beach erosion, according to new article in Physics of Fluids, which may lead to better solutions for sustainable beaches

People standing on a beach often feel the water tugging the sand away from under their feet. This is the undertow, the current that pulls water back into the ocean after a wave breaks on the beach.

This image shows a sliff-like erosion escarpment on a Florida beach.

Credit: CREDIT: U.S. Geological Survey/photo by Randolph Femmer

Large storms produce strong undertows that can strip beaches of sand. By predicting how undertows interact with shorelines, researchers can build sand dunes and engineer other soft solutions to create more robust and sustainable beaches.

"Formulation of the Undertow Using Linear Wave Theory," a new paper in the journal Physics of Fluids, clears up some of the controversy in undertow modeling, so planners can assess erosion threats faster and more accurately.

... more about:
»breaks »differences »physics »properties »storms »waves

The paper's authors are coastal engineer Greg Guannel of the Natural Capital Project, which seeks smarter ways to integrate natural resources into development, and Tuba Ozkan-Haller, an associate professor of coastal engineering at Oregon State University.

Researchers have studied undertow for more than 40 years, and have developed very accurate models of its behavior. The most sophisticated ones are based on Navier-Stokes equations, which describe fluid flow in exquisite detail.

Unfortunately, such precision comes at a price. The mathematics are complex and it takes powerful supercomputers to run them quickly.

"You can't use them to solve day-to-day erosion problems," Guannel said.

For real-world use, researchers need mathematical shortcuts, the engineering equivalent of rounding numbers so they are easier to work with. Researchers turn to linear wave theory, which simplifies things by using idealized forms. Beaches, for example, are wall. Waves are given perfect "S" shapes based on average properties. Instead of modeling everything, researchers make assumptions about some of the weaker forces acting on waves.

"We try to come up with a set of equations that describes flow properties in one step, rather than hundreds of steps, so we can solve problems faster," Guannel said.

Several research teams, each with its own approach, built simplified models based on linear theory. And each came up with a different solution.

This bothered Guannel, who said, "If you start with a single theory, no matter how you approach the problem, you should come up with only one solution, not many."

So Guannel and Ozkan-Haller retraced the work of each team. They found their differences were not due to approach, but to the way they handled weak forces generated by waves. They then developed more consistent ways to describe those forces. The strongest of them was the force exerted by water moving from the top of the wave to the bottom.

"A major advance in our paper was to describe that force correctly," Guannel said.

Another weak force is advection, which occurs as the undertow is sucked into the larger current created by the waves. "In the larger scheme of things, advection of the undertow is weak. But here, it can play an important role," Guannel explained.

"We found that all the differences between researchers were due to the erroneous formulation or the neglect of these weak terms. When we add them back in, everyone who did the math correctly comes up with the same solution," he said.

Instead of debating methodology, researchers can now focus on improving the accuracy of their models. If they can do this, Guannel said, they can build better models to help preserve the shoreline and enable beaches to recover faster after storms.


The article "Formulation of the Undertow Using Linear Wave Theory" is authored by G. Guannel and H.T. Özkan-Haller. It appears in the journal Physics of Fluids on May 13, 2014 (DOI: 10.1063/1.4872160). After that date, it can be accessed at:


Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See:

Jason Socrates Bardi | Eurek Alert!

Further reports about: breaks differences physics properties storms waves

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>