Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The physics of ocean undertow

13.05.2014

Small forces make a big difference in beach erosion, according to new article in Physics of Fluids, which may lead to better solutions for sustainable beaches

People standing on a beach often feel the water tugging the sand away from under their feet. This is the undertow, the current that pulls water back into the ocean after a wave breaks on the beach.


This image shows a sliff-like erosion escarpment on a Florida beach.

Credit: CREDIT: U.S. Geological Survey/photo by Randolph Femmer

Large storms produce strong undertows that can strip beaches of sand. By predicting how undertows interact with shorelines, researchers can build sand dunes and engineer other soft solutions to create more robust and sustainable beaches.

"Formulation of the Undertow Using Linear Wave Theory," a new paper in the journal Physics of Fluids, clears up some of the controversy in undertow modeling, so planners can assess erosion threats faster and more accurately.

... more about:
»breaks »differences »physics »properties »storms »waves

The paper's authors are coastal engineer Greg Guannel of the Natural Capital Project, which seeks smarter ways to integrate natural resources into development, and Tuba Ozkan-Haller, an associate professor of coastal engineering at Oregon State University.

Researchers have studied undertow for more than 40 years, and have developed very accurate models of its behavior. The most sophisticated ones are based on Navier-Stokes equations, which describe fluid flow in exquisite detail.

Unfortunately, such precision comes at a price. The mathematics are complex and it takes powerful supercomputers to run them quickly.

"You can't use them to solve day-to-day erosion problems," Guannel said.

For real-world use, researchers need mathematical shortcuts, the engineering equivalent of rounding numbers so they are easier to work with. Researchers turn to linear wave theory, which simplifies things by using idealized forms. Beaches, for example, are wall. Waves are given perfect "S" shapes based on average properties. Instead of modeling everything, researchers make assumptions about some of the weaker forces acting on waves.

"We try to come up with a set of equations that describes flow properties in one step, rather than hundreds of steps, so we can solve problems faster," Guannel said.

Several research teams, each with its own approach, built simplified models based on linear theory. And each came up with a different solution.

This bothered Guannel, who said, "If you start with a single theory, no matter how you approach the problem, you should come up with only one solution, not many."

So Guannel and Ozkan-Haller retraced the work of each team. They found their differences were not due to approach, but to the way they handled weak forces generated by waves. They then developed more consistent ways to describe those forces. The strongest of them was the force exerted by water moving from the top of the wave to the bottom.

"A major advance in our paper was to describe that force correctly," Guannel said.

Another weak force is advection, which occurs as the undertow is sucked into the larger current created by the waves. "In the larger scheme of things, advection of the undertow is weak. But here, it can play an important role," Guannel explained.

"We found that all the differences between researchers were due to the erroneous formulation or the neglect of these weak terms. When we add them back in, everyone who did the math correctly comes up with the same solution," he said.

Instead of debating methodology, researchers can now focus on improving the accuracy of their models. If they can do this, Guannel said, they can build better models to help preserve the shoreline and enable beaches to recover faster after storms.

###

The article "Formulation of the Undertow Using Linear Wave Theory" is authored by G. Guannel and H.T. Özkan-Haller. It appears in the journal Physics of Fluids on May 13, 2014 (DOI: 10.1063/1.4872160). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/pof2/26/5/10.1063/1.4872160

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See: http://pof.aip.org

Jason Socrates Bardi | Eurek Alert!

Further reports about: breaks differences physics properties storms waves

More articles from Physics and Astronomy:

nachricht NASA missions monitor a waking black hole
01.07.2015 | NASA/Goddard Space Flight Center

nachricht Buried in the heart of a giant
01.07.2015 | ESO

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Europeans have unknowingly contributed to the spread of invasive plant species in North America

01.07.2015 | Ecology, The Environment and Conservation

Graphene flexes its electronic muscles

01.07.2015 | Materials Sciences

Physical study may give boost to hydrogen cars

01.07.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>