Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The new atomic age: building smaller, greener electronics

08.07.2014

UAlberta research team developing atom-scale, ultra-low-power computing devices to replace transistor circuits.

In the drive to get small, Robert Wolkow and his lab at the University of Alberta are taking giant steps forward.


This video animation shows how atomic "quantum dots" could lead to revolutionary, ultra-low-power electronics. (Video courtesy Robert Wolkow)

The digital age has resulted in a succession of smaller, cleaner and less power-hungry technologies since the days the personal computer fit atop a desk, replacing mainframe models that once filled entire rooms.

Desktop PCs have since given way to smaller and smaller laptops, smartphones and devices that most of us carry around in our pockets. But as Wolkow points out, this technological shrinkage can only go so far when using traditional transistor-based integrated circuits. That’s why he and his research team are aiming to build entirely new technologies at the atomic scale.

“Our ultimate goal is to make ultra-low-power electronics because that’s what is most demanded by the world right now,” said Wolkow, the iCORE Chair in Nanoscale Information and Communications Technology in the Faculty of Science.

“We are approaching some fundamental limits that will stop the 30-year-long drive to make things faster, cheaper, better and smaller; this will come to an end soon. “An entirely new method of computing will be necessary.” Atomic-scale electronics Wolkow and his team in the U of A’s physics department and the National Institute for Nanotechnology are working to engineer atomically precise technologies that have practical, real-world applications. His lab already made its way into the Guinness Book of World Records for inventing the world’s sharpest object—a microscope tip just one atom wide at its end.

They made an earlier breakthrough in 2009 when they created the smallest-ever quantum dots—a single atom of silicon measuring less than one nanometre wide—using a technique that will be awarded a U.S. patent later this month. Quantum dots, Wolkow says, are vessels that confine electrons, much like pockets on a pool table.

The dots can be spaced so that electrons can be in two pockets at the same time, allowing them to interact and share electrons—a level of control that makes them ideally suited for computer-like circuitry. “It could be as important as the transistor,” says Wolkow. “It lays the groundwork for a whole new basis of electronics, and in particular, ultra-low-power electronics.”

New discoveries pave way for superior nanoelectronics Wolkow and his team have built upon their earlier successes, modifying scanning tunnelling microscopes with their atom-wide microscope tip, which emits ions instead of light at superior resolution. Like the needle of a record player, the microscopes can trace out the topography of silicon atoms, sensing surface features on the atomic scale.

In a new paper published in Physical Review Letters, post-doctoral fellow Bruno Martins together with Wolkow and other members of the team, observed for the first time how an electrical current flows across the skin of a silicon crystal and also measured electrical resistance as the current moved over a single atomic step. Wolkow says silicon crystals are mostly smooth except for these atomic staircases—slight imperfections with each step being one atom high.

Knowing what causes electrical resistance and being able to record the magnitude of resistance paves the way to design superior nanoelectronic devices, he says. In another first, this time led by PhD student Marco Taucer, the research team observed how single electrons jump in and out of the quantum dots, and devised a method of monitoring how many electrons fit in the pocket and measuring the dot’s charge. In the past, such observations were impossible because the very act of trying to measure something so extraordinarily small changes it, Wolkow says.

“Imagine that if you looked at something with your eyes, the act of looking at it bent it somehow,” he says. “We now can avoid that perturbation due to looking, and so can access and usefully deploy the dots in circuitry.” The team’s findings, also published in Physical Review Letters, give scientists the ability to monitor the charge of quantum dots. They’ve also found a way to create quantum dots that function at room temperature, meaning costly cryogenics is not necessary.

“That’s exciting because, suddenly, things that were thought of as exotic, far-off ideas are near. We think we can build them.” Taking the next generation of electronics to the market Wolkow and his team believe so strongly in the commercial potential of atomic-scale circuitry, two years ago they launched their own spinoff company, Quantum Silicon Inc.

Over the next five to six years, QSI plans to demonstrate the potential of these “extremely green” circuits that can make use of smaller, longer-lasting batteries. It also moves them from the realm of basic to applied research and real-world scenarios, Wolkow says.

“We have this nice connection where we have a training ground for students and highly academic ambitions for progress, but those things quite naturally and immediately transfer to this practical entity.” Much of their efforts initially will focus on creating hybrid technologies—adding atom-scale circuitry to conventional electronics such as GPS devices or satellites, like replacing one link in a chain given the time-intensiveness of making the new circuits. It could take a decade before it’s possible to mass-produce atom-scale circuitry, but the future potential is very strong, Wolkow says.

“It has the potential to totally change the world’s electronic basis. It’s a trillion-dollar prospect.”

Bryan Alary | Eurek Alert!
Further information:
http://uofa.ualberta.ca/news-and-events/newsarticles/2014/june/the-new-atomic-age

More articles from Physics and Astronomy:

nachricht LIGO confirms RIT's breakthrough prediction of gravitational waves
12.02.2016 | Rochester Institute of Technology

nachricht Milestone in physics: gravitational waves detected with the laser system from LZH
12.02.2016 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>