Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The new atomic age: building smaller, greener electronics


UAlberta research team developing atom-scale, ultra-low-power computing devices to replace transistor circuits.

In the drive to get small, Robert Wolkow and his lab at the University of Alberta are taking giant steps forward.

This video animation shows how atomic "quantum dots" could lead to revolutionary, ultra-low-power electronics. (Video courtesy Robert Wolkow)

The digital age has resulted in a succession of smaller, cleaner and less power-hungry technologies since the days the personal computer fit atop a desk, replacing mainframe models that once filled entire rooms.

Desktop PCs have since given way to smaller and smaller laptops, smartphones and devices that most of us carry around in our pockets. But as Wolkow points out, this technological shrinkage can only go so far when using traditional transistor-based integrated circuits. That’s why he and his research team are aiming to build entirely new technologies at the atomic scale.

“Our ultimate goal is to make ultra-low-power electronics because that’s what is most demanded by the world right now,” said Wolkow, the iCORE Chair in Nanoscale Information and Communications Technology in the Faculty of Science.

“We are approaching some fundamental limits that will stop the 30-year-long drive to make things faster, cheaper, better and smaller; this will come to an end soon. “An entirely new method of computing will be necessary.” Atomic-scale electronics Wolkow and his team in the U of A’s physics department and the National Institute for Nanotechnology are working to engineer atomically precise technologies that have practical, real-world applications. His lab already made its way into the Guinness Book of World Records for inventing the world’s sharpest object—a microscope tip just one atom wide at its end.

They made an earlier breakthrough in 2009 when they created the smallest-ever quantum dots—a single atom of silicon measuring less than one nanometre wide—using a technique that will be awarded a U.S. patent later this month. Quantum dots, Wolkow says, are vessels that confine electrons, much like pockets on a pool table.

The dots can be spaced so that electrons can be in two pockets at the same time, allowing them to interact and share electrons—a level of control that makes them ideally suited for computer-like circuitry. “It could be as important as the transistor,” says Wolkow. “It lays the groundwork for a whole new basis of electronics, and in particular, ultra-low-power electronics.”

New discoveries pave way for superior nanoelectronics Wolkow and his team have built upon their earlier successes, modifying scanning tunnelling microscopes with their atom-wide microscope tip, which emits ions instead of light at superior resolution. Like the needle of a record player, the microscopes can trace out the topography of silicon atoms, sensing surface features on the atomic scale.

In a new paper published in Physical Review Letters, post-doctoral fellow Bruno Martins together with Wolkow and other members of the team, observed for the first time how an electrical current flows across the skin of a silicon crystal and also measured electrical resistance as the current moved over a single atomic step. Wolkow says silicon crystals are mostly smooth except for these atomic staircases—slight imperfections with each step being one atom high.

Knowing what causes electrical resistance and being able to record the magnitude of resistance paves the way to design superior nanoelectronic devices, he says. In another first, this time led by PhD student Marco Taucer, the research team observed how single electrons jump in and out of the quantum dots, and devised a method of monitoring how many electrons fit in the pocket and measuring the dot’s charge. In the past, such observations were impossible because the very act of trying to measure something so extraordinarily small changes it, Wolkow says.

“Imagine that if you looked at something with your eyes, the act of looking at it bent it somehow,” he says. “We now can avoid that perturbation due to looking, and so can access and usefully deploy the dots in circuitry.” The team’s findings, also published in Physical Review Letters, give scientists the ability to monitor the charge of quantum dots. They’ve also found a way to create quantum dots that function at room temperature, meaning costly cryogenics is not necessary.

“That’s exciting because, suddenly, things that were thought of as exotic, far-off ideas are near. We think we can build them.” Taking the next generation of electronics to the market Wolkow and his team believe so strongly in the commercial potential of atomic-scale circuitry, two years ago they launched their own spinoff company, Quantum Silicon Inc.

Over the next five to six years, QSI plans to demonstrate the potential of these “extremely green” circuits that can make use of smaller, longer-lasting batteries. It also moves them from the realm of basic to applied research and real-world scenarios, Wolkow says.

“We have this nice connection where we have a training ground for students and highly academic ambitions for progress, but those things quite naturally and immediately transfer to this practical entity.” Much of their efforts initially will focus on creating hybrid technologies—adding atom-scale circuitry to conventional electronics such as GPS devices or satellites, like replacing one link in a chain given the time-intensiveness of making the new circuits. It could take a decade before it’s possible to mass-produce atom-scale circuitry, but the future potential is very strong, Wolkow says.

“It has the potential to totally change the world’s electronic basis. It’s a trillion-dollar prospect.”

Bryan Alary | Eurek Alert!
Further information:

More articles from Physics and Astronomy:

nachricht Listening to the Extragalactic Radio
13.10.2015 | Max-Planck-Institut für Radioastronomie

nachricht Scientists paint quantum electronics with beams of light
12.10.2015 | University of Chicago

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Smart clothing, mini-eyes, and a virtual twin – Artificial Intelligence at ICT 2015

13.10.2015 | Trade Fair News

Listening to the Extragalactic Radio

13.10.2015 | Physics and Astronomy

Penn study stops vision loss in late-stage canine X-linked retinitis pigmentosa

13.10.2015 | Health and Medicine

More VideoLinks >>>