Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The direct approach to microcavities

09.05.2014

A robust micrometer-scale structure for trapping light enhances optical interactions in advanced photonic devices

Trapping light into a small volume is a useful way of amplifying optical effects. Optical cavities, for example, can enhance the interaction between light and matter. Incorporating these tiny structures into actual devices is difficult however, because they are easily broken or can become optically misaligned.


A gold grating at the end of an optical fiber couples light into a spherical microcavity, shown here as a purple sphere. The red arrows show the light bent by the grating, which is then coupled to the whispering-gallery mode (red circle). Concentrating light in compact structures is important for advancing photonics.

Copyright : 2014 A*STAR Singapore Institute of Manufacturing Technology

Xia Yu at the A*STAR Singapore Institute of Manufacturing Technology and co-workers have now developed an optical-fiber-based structure that harnesses the potential of light trapped in a microcavity. The novel design also provides a robust route to advanced devices for filtering and sensing light1.

Yu and colleagues melted silica glass to form a sphere with a diameter of 182 micrometers. They then patterned the end of an optical fiber with a gold grating and held it close to the microsphere. The grating coupled light propagating along the fiber into the sphere (see image). Light with the right wavelength traveled around in circles within the sphere, trapped by the smooth silica–air interface. This confined light is known as a whispering-gallery resonant mode.

The A*STAR team investigated the properties of their structure by measuring the amount of light at each wavelength that managed to escape from the cavity back into the fiber. The typical wavelength-dependent response of a microsphere is a sharp, symmetric peak centered on the resonant wavelength of the cavity.

Instead, the researchers observed an asymmetric spectral peak, which they recognized as a clear signature of the so-called Fano effect, indicating strong interaction or interference between the whispering-gallery mode and the light in the fiber directly reflected back from the grating.

“This interfering effect makes Fano resonances especially sensitive to changes in either of the participating systems: a slight perturbation results in dramatic alteration in the optical characteristics,” says Yu. “An obvious application of Fano resonance is for use in ultra-sensitive detection.”

In previous investigations of the optical Fano effect, researchers inserted (and extracted) light into the cavity through the side of an optical fiber — an approach that proved unstable and inefficient. The method used by Yu and colleagues of directly inserting light into the cavity through the end of the fiber proved far more robust, making the technology a plausible platform for cheap and compact optical-resonator-based photonic devices.

Another possible application for the technology is as an optical switch. “A good switching device must be fast,” explains Yu. “Therefore, the next step in our research will be to attempt to control the speed of the whispering-gallery mode Fano resonance.”


The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

Associated links

Journal information

Zhou, Y., Zhu, D., Yu, X., Ding, W. & Luan, F. Fano resonances in metallic grating coupled whispering gallery mode resonator. Applied Physics Letters 103, 151108 (2013)

A*STAR Research | Research SEA News
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht X-rays and electrons join forces to map catalytic reactions in real-time
30.06.2015 | DOE/Brookhaven National Laboratory

nachricht 3D Plasmonic Antenna Capable of Focusing Light into Few Nanometers
30.06.2015 | Korea Advanced Institute of Science and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

3D Plasmonic Antenna Capable of Focusing Light into Few Nanometers

30.06.2015 | Physics and Astronomy

X-rays and electrons join forces to map catalytic reactions in real-time

30.06.2015 | Physics and Astronomy

A polarizing view

30.06.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>