Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The direct approach to microcavities

09.05.2014

A robust micrometer-scale structure for trapping light enhances optical interactions in advanced photonic devices

Trapping light into a small volume is a useful way of amplifying optical effects. Optical cavities, for example, can enhance the interaction between light and matter. Incorporating these tiny structures into actual devices is difficult however, because they are easily broken or can become optically misaligned.


A gold grating at the end of an optical fiber couples light into a spherical microcavity, shown here as a purple sphere. The red arrows show the light bent by the grating, which is then coupled to the whispering-gallery mode (red circle). Concentrating light in compact structures is important for advancing photonics.

Copyright : 2014 A*STAR Singapore Institute of Manufacturing Technology

Xia Yu at the A*STAR Singapore Institute of Manufacturing Technology and co-workers have now developed an optical-fiber-based structure that harnesses the potential of light trapped in a microcavity. The novel design also provides a robust route to advanced devices for filtering and sensing light1.

Yu and colleagues melted silica glass to form a sphere with a diameter of 182 micrometers. They then patterned the end of an optical fiber with a gold grating and held it close to the microsphere. The grating coupled light propagating along the fiber into the sphere (see image). Light with the right wavelength traveled around in circles within the sphere, trapped by the smooth silica–air interface. This confined light is known as a whispering-gallery resonant mode.

The A*STAR team investigated the properties of their structure by measuring the amount of light at each wavelength that managed to escape from the cavity back into the fiber. The typical wavelength-dependent response of a microsphere is a sharp, symmetric peak centered on the resonant wavelength of the cavity.

Instead, the researchers observed an asymmetric spectral peak, which they recognized as a clear signature of the so-called Fano effect, indicating strong interaction or interference between the whispering-gallery mode and the light in the fiber directly reflected back from the grating.

“This interfering effect makes Fano resonances especially sensitive to changes in either of the participating systems: a slight perturbation results in dramatic alteration in the optical characteristics,” says Yu. “An obvious application of Fano resonance is for use in ultra-sensitive detection.”

In previous investigations of the optical Fano effect, researchers inserted (and extracted) light into the cavity through the side of an optical fiber — an approach that proved unstable and inefficient. The method used by Yu and colleagues of directly inserting light into the cavity through the end of the fiber proved far more robust, making the technology a plausible platform for cheap and compact optical-resonator-based photonic devices.

Another possible application for the technology is as an optical switch. “A good switching device must be fast,” explains Yu. “Therefore, the next step in our research will be to attempt to control the speed of the whispering-gallery mode Fano resonance.”


The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

Associated links

Journal information

Zhou, Y., Zhu, D., Yu, X., Ding, W. & Luan, F. Fano resonances in metallic grating coupled whispering gallery mode resonator. Applied Physics Letters 103, 151108 (2013)

A*STAR Research | Research SEA News
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Upside down and inside out
27.04.2015 | University of Cambridge

nachricht Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles
24.04.2015 | Korea Advanced Institute of Science and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Strong Evidence – New Insight in Muscle Function

27.04.2015 | Life Sciences

The Future of Oil and Gas: Last of Her Kind

27.04.2015 | Power and Electrical Engineering

Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections

27.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>