Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Black Hole at the Birth of the Universe

11.08.2014

The big bang poses a big question: if it was indeed the cataclysm that blasted our universe into existence 13.7 billion years ago, what sparked it?

Three Perimeter Institute researchers have a new idea about what might have come before the big bang. It’s a bit perplexing, but it is grounded in sound mathematics, testable, and enticing enough to earn the cover story in Scientific American, called “The Black Hole at the Beginning of Time.”


The Birth of Universe

(c) Perimeter Institute

What we perceive as the big bang, they argue, could be the three-dimensional “mirage” of a collapsing star in a universe profoundly different than our own.

“Cosmology’s greatest challenge is understanding the big bang itself,” write Perimeter Institute Associate Faculty member Niayesh Afshordi, Affiliate Faculty member and University of Waterloo professor Robert Mann, and PhD student Razieh Pourhasan.

... more about:
»Black »Hole »Holographic »Perimeter »Universe »argue »holography

Conventional understanding holds that the big bang began with a singularity – an unfathomably hot and dense phenomenon of spacetime where the standard laws of physics break down. Singularities are bizarre, and our understanding of them is limited.

“For all physicists know, dragons could have come flying out of the singularity,” Afshordi says in an interview with Nature.

The problem, as the authors see it, is that the big bang hypothesis has our relatively comprehensible, uniform, and predictable universe arising from the physics-destroying insanity of a singularity. It seems unlikely.

So perhaps something else happened. Perhaps our universe was never singular in the first place.

Their suggestion: our known universe could be the three-dimensional “wrapping” around a four-dimensional black hole’s event horizon. In this scenario, our universe burst into being when a star in a four-dimensional universe collapsed into a black hole.

In our three-dimensional universe, black holes have two-dimensional event horizons – that is, they are surrounded by a two-dimensional boundary that marks the “point of no return.” In the case of a four-dimensional universe, a black hole would have a three-dimensional event horizon.

In their proposed scenario, our universe was never inside the singularity; rather, it came into being outside an event horizon, protected from the singularity. It originated as – and remains – just one feature in the imploded wreck of a four-dimensional star.

The researchers emphasize that this idea, though it may sound “absurd,” is grounded firmly in the best modern mathematics describing space and time. Specifically, they’ve used the tools of holography to “turn the big bang into a cosmic mirage.” Along the way, their model appears to address long-standing cosmological puzzles and – crucially – produce testable predictions.

Of course, our intuition tends to recoil at the idea that everything and everyone we know emerged from the event horizon of a single four-dimensional black hole. We have no concept of what a four-dimensional universe might look like. We don’t know how a four-dimensional “parent” universe itself came to be.

But our fallible human intuitions, the researchers argue, evolved in a three-dimensional world that may only reveal shadows of reality.

They draw a parallel to Plato’s allegory of the cave, in which prisoners spend their lives seeing only the flickering shadows cast by a fire on a cavern wall.

“Their shackles have prevented them from perceiving the true world, a realm with one additional dimension,” they write. “Plato’s prisoners didn’t understand the powers behind the sun, just as we don’t understand the four-dimensional bulk universe. But at least they knew where to look for answers.”

– Colin Hunter 

FURTHER EXPLORATION

“The Black Hole at the Beginning of Time,” Scientific American
“Did a Hyper-Black Hole Spawn the Universe?” Nature
“Out of the White Hole: A Holographic Origin for the Big Bang,” arXiv
Check out a video explaining "The Black Hole at the Birth of the Universe"

Eamon O'Flynn | newswise
Further information:
http://www.perimeterinstitute.ca

Further reports about: Black Hole Holographic Perimeter Universe argue holography

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>