Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas A&M-led research finds ancient city of 'modern' galaxies

12.05.2010
Using NASA's Spitzer Space Telescope, a Texas A&M University-led team of astronomers has uncovered what may be the earliest, most distant cluster of galaxies ever detected.

The group of roughly 60 galaxies, called CLG J02182-05102, is nearly 10 billion years old — born just 4 billion years after the Big Bang. However, it's not the size nor the age of the cluster that amazes the team of researchers led by Dr. Casey Papovich, an assistant professor in the Texas A&M Department of Physics and Astronomy and member of the George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy. Rather, it's the surprisingly modern appearance of CLG J02182-05102 that has them baffled — a huge, red collection of galaxies typical of only present-day galaxies.

"It's like we dug an archaeological site in Rome and found pieces of modern Rome amongst the ruins," explains Papovich, lead author of the team's study to be published in Astrophysical Journal.

While its neighboring galaxies appear vastly smaller and far fainter, Papovich says CLG J02182-05102 stands out as a densely-populated bundle of ancient galaxies. Enormous red galaxies at the center contain almost 10 times as many stars as our Milky Way, he notes, combining for a total size that rivals that of the most monstrous galaxies of our nearby universe.

... more about:
»Astronomy »Big Bang »CLG »Milky Way »NASA »Physic »Space »Telescope

Before now, Papovich says, such a finding would be considered by many astronomers to be highly unlikely, considering the time frame in which they were found.

"The predictions are that these things should be very rare when the universe was 4 billion years old, and yet, we found them," Papovich explains. "Not only did we find them, it looks for all intents and purposes like they had already formed completely and evolved into the large concentrations of galaxies that we see in clusters today."

Exactly why these particular galaxies are fully formed that early is what Papovich and his collaborators — which include astronomers from NASA's Jet Propulsion Laboratory at the California Institute of Technology (Caltech) as well as Carnegie Observatories — hope to one day uncover, but for now, studying CLG J02182-05102 could help them and other researchers better understand how galaxies form and cluster in general.

The find resulted from a project initiated two years ago when Papovich and his team observed an area of the sky that could encompass 250 full moons, the largest extragalactic survey of space ever made — the Spitzer Wide-area InfraRed Extragalctic (SWIRE) survey. The team focused on a cosmic region of the survey that previously had been observed by other instruments including Japan's Subaru telescope in Mauna Kea, Hawaii, and the European Space Agency's orbiting XMN-Newton telescope. This, combined with infrared data from the United Kingdom Infrared Telescope — also in Hawaii — and Spitzer's Public Ultra Deep Sky survey instantly revealed a number of distant galaxies.

It wasn't until Papovich's group studied faint light from CLG J02182-05102's least-dim galaxies that they were able to determine they had found a cluster that contained about 60 galaxies full of old, red stars, at a time when the universe was only 4 billion years old — about 30 percent of the universe's current age of 13.7 billion years. At this point in time, most other galaxies would still be forming their very first stars and certainly would not have congregated with other galaxies yet.

In essence, Papovich said the galaxies in CLG J02182-05102 must have subscribed to a "rock 'n' roll" lifestyle — they lived fast and died young. It's another mystery Papovich hopes to solve through deeper observations, including spectroscopy, with the Hubble Telescope later this year.

"That's one of the reasons this is so interesting," he adds. "It seems that they somehow had a premonition they would end up in these big clusters, so that's another thing we want to find out."

To learn more about the team's research as well as additional information regarding Texas A&M Astronomy, visit http://astronomy.tamu.edu.

For more information on NASA's Spitzer Space Telescope, visit http://www.spitzer.caltech.edu/.

About research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $582 million, which ranks third nationally for universities without a medical school, and underwrites approximately 3,500 sponsored projects. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Contact: Chris Jarvis, (979) 845-7246 or cjarvis@science.tamu.edu or Dr. Casey Papovich, (979) 862-2704 or papovich@physics.tamu.edu

Story includes contributions from Adam Hadhazy and NASA/JPL-Caltech.

For more news about Texas A&M University, go to http://tamunews.tamu.edu.

Follow us on Twitter at http://twitter.com/tamutalk.

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

Further reports about: Astronomy Big Bang CLG Milky Way NASA Physic Space Telescope

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>