Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tests under way on the sunshield for NASA's Webb telescope

20.09.2011
NASA is testing an element of the sunshield that will protect the James Webb Space Telescope's mirrors and instruments during its mission to observe the most distant objects in the universe.

The sunshield will consist of five tennis court-sized layers to allow the Webb telescope to cool to its cryogenic operating temperature of minus 387.7 degrees Fahrenheit (40 Kelvin).

Testing began early this month at ManTech International Corp.'s Nexolve facility in Huntsville, Ala., using flight-like material for the sunshield, a full-scale test frame and hardware attachments. The test sunshield layer is made of Kapton, a very thin, high-performance plastic with a reflective metallic coating, similar to a Mylar balloon. Each sunshield layer is less than half the thickness of a sheet of paper. It is stitched together like a quilt from more than 52 individual pieces because manufacturers do not make Kapton sheets as big as a tennis court.

The tests are expected to be completed in two weeks.

"The conclusion of testing on this full size layer will be the final step of the sunshield's development program and provides the confidence and experience to manufacture the five flight layers," said Keith Parrish, Webb Sunshield manager at NASA's Goddard Space Flight Center in Greenbelt, Md.

During testing, engineers use a high-precision laser radar to measure the layer every few inches at room temperature and pressure, creating a 3D map of the material surface, which is curved in multiple directions. The map will be compared to computer models to see if the material behaved as predicted, and whether critical clearances with adjacent hardware are achieved.

The test will be done on all five layers to give engineers a precise idea of how the entire sunshield will behave once in orbit. Last year, a one-third-scale model of the sunshield was tested in a chamber that simulated the extreme temperatures it will experience in space. The test confirmed the sunshield will allow the telescope to cool to its operating temperature.

After the full-size sunshield layers complete testing and model analysis, they will be sent to Northrop Grumman in Redondo Beach Calif., where engineers verify the process of how the layers will unfurl in space. There the sunshield layers will be folded, much like a parachute, so they can be safely stowed for launch.

The Webb is the world's next-generation space observatory and successor to the Hubble Space Telescope. The most powerful space telescope ever built, Webb will provide images of the very first galaxies ever formed, and explore planets around distant stars. The Webb is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

For more information and related images, visit:
http://www.nasa.gov/topics/technology/features/sunshield-test.html
For more information about the James Webb Space Telescope, visit:
http://www.jwst.nasa.gov

Trent Perrotto | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>