Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tests under way on the sunshield for NASA's Webb telescope

20.09.2011
NASA is testing an element of the sunshield that will protect the James Webb Space Telescope's mirrors and instruments during its mission to observe the most distant objects in the universe.

The sunshield will consist of five tennis court-sized layers to allow the Webb telescope to cool to its cryogenic operating temperature of minus 387.7 degrees Fahrenheit (40 Kelvin).

Testing began early this month at ManTech International Corp.'s Nexolve facility in Huntsville, Ala., using flight-like material for the sunshield, a full-scale test frame and hardware attachments. The test sunshield layer is made of Kapton, a very thin, high-performance plastic with a reflective metallic coating, similar to a Mylar balloon. Each sunshield layer is less than half the thickness of a sheet of paper. It is stitched together like a quilt from more than 52 individual pieces because manufacturers do not make Kapton sheets as big as a tennis court.

The tests are expected to be completed in two weeks.

"The conclusion of testing on this full size layer will be the final step of the sunshield's development program and provides the confidence and experience to manufacture the five flight layers," said Keith Parrish, Webb Sunshield manager at NASA's Goddard Space Flight Center in Greenbelt, Md.

During testing, engineers use a high-precision laser radar to measure the layer every few inches at room temperature and pressure, creating a 3D map of the material surface, which is curved in multiple directions. The map will be compared to computer models to see if the material behaved as predicted, and whether critical clearances with adjacent hardware are achieved.

The test will be done on all five layers to give engineers a precise idea of how the entire sunshield will behave once in orbit. Last year, a one-third-scale model of the sunshield was tested in a chamber that simulated the extreme temperatures it will experience in space. The test confirmed the sunshield will allow the telescope to cool to its operating temperature.

After the full-size sunshield layers complete testing and model analysis, they will be sent to Northrop Grumman in Redondo Beach Calif., where engineers verify the process of how the layers will unfurl in space. There the sunshield layers will be folded, much like a parachute, so they can be safely stowed for launch.

The Webb is the world's next-generation space observatory and successor to the Hubble Space Telescope. The most powerful space telescope ever built, Webb will provide images of the very first galaxies ever formed, and explore planets around distant stars. The Webb is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

For more information and related images, visit:
http://www.nasa.gov/topics/technology/features/sunshield-test.html
For more information about the James Webb Space Telescope, visit:
http://www.jwst.nasa.gov

Trent Perrotto | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>