Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teeny-tiny X-ray vision

30.07.2009
The tubes that power X-ray machines are shrinking, improving the clarity and detail of their Superman-like vision. A team of nanomaterial scientists, medical physicists, and cancer biologists at the University of North Carolina has developed new lower-cost X-ray tubes packed with sharp-tipped carbon nanotubes for cancer research and treatment.

The tiny technology, presented at this year's meeting of the American Association of Physicists in Medicine in Anaheim, California, is being developed to image human breast tissue, laboratory animals, and cancer patients under radiotherapy treatment, and to irradiate cells with more control than previously possible with conventional X-ray tubes.

The X-ray machine used in a typical hospital today is powered by a "hot" vacuum tube that dates back to the beginning of the 20th century. Inside the tube, a tungsten metal filament -- similar to the one that creates light in an incandescent bulb -- is heated to a temperature of 1,000 degrees Celsius. The heat releases electrons, which accelerate in the X-ray tube and strike a piece of metal, the anode, creating X-rays.

Sha Chang, Otto Zhou, and colleagues that University of North Carolina have developed cold X-ray tubes that replace the tungsten filament with carbon nanotubes packed like blades of tiny grass. Electrons are instantly emitted from the sharp tips of the nanotubes when a voltage is applied. "Think of each nanotube as a lightning rod on top of a building. The high electric field at the tip of the lightning rod draws the electric current from the cloud. Carbon nanotubes emit electrons using a similar principle," said Chang.

The group used the nanotubes to build micro-sized scanners and image the interior anatomy of small laboratory animals. Existing X-ray technologies have difficulty compensating for the blur caused by the creature's breathing. Slow mechanical shutters that open and close to block and release the radiation are used to time X-ray pulses to correspond with breath, but their speed is inadequate for small animals because of the creatures' extremely fast breathing and cardiac motion. Chang and Zhou have demonstrated that their carbon nanotubes, which can be turned on and off instantaneously, are fairly easy to synch up to equipment that monitors small animal's breathing or heart rate.

The nanotube devices may also improve human cancer imaging and treatment. CT scanners currently in use check for breast cancer by swinging a single large X-ray source around the target to take a thousand pictures over the course of minutes. Using many nanotube X-ray sources lined up in an array instead, breast imaging can be done within few seconds by electronically turning on and off each of the X-ray sources without any physical motion. This fast "tomosynthesis" imaging improves patient comfort and boosts image quality by reducing motion blur. Using 25 simultaneous beams, the team produced images of growths in breast tissue at nearly twice the resolution of commercial scanners on the market.

This summer Chang's team will conduct a clinical test of a first generation nanotube-based imaging system for high-speed image-guided radiotherapy. The research image system is developed by Siemens and Xinray Inc., a joint venture between Siemens and a University of North Carolina startup company Xintech Inc.

The talk "Carbon Nanotube Field Emission Based Imaging and Irradiation Technology Development for Basic Cancer Research" will be at 10:55 a.m. on Tuesday, July 28 in Ballroom D.

PRESS REGISTRATION

Journalists are welcome to attend the conference free of charge. AAPM will grant complimentary registration to any full-time or freelance journalist working on assignment. The Press guidelines are posted at: http://www.aapm.org/meetings/09AM/VirtualPressRoom/.

If you are a reporter and would like to attend, or if you have questions about the meeting, contact Jason Bardi (jbardi@aip.org, 858-775-4080).

RELATED LINKS

Main Meeting Web site: http://www.aapm.org/meetings/09AM/.

Search Meeting Abstracts: http://www.aapm.org/meetings/09AM/prsearch.asp?mid=42.

Meeting program: http://www.aapm.org/meetings/09AM/MeetingProgram.asp.

AAPM home page: http://www.aapm.org.

Background article about how medical physics has revolutionized medicine: http://www.newswise.com/articles/view/538208/.

ABOUT MEDICAL PHYSICISTS

If you ever had a mammogram, ultrasound, X-ray, MRI, PET scan, or known someone treated for cancer, chances are reasonable that a medical physicist was working behind the scenes to make sure the imaging procedure was as effective as possible. Medical physicists help to develop new imaging techniques, improve existing ones, and assure the safety of radiation used in medical procedures in radiology, radiation oncology and nuclear medicine. They collaborate with radiation oncologists to design cancer treatment plans. They provide routine quality assurance and quality control on radiation equipment and procedures to ensure that cancer patients receive the prescribed dose of radiation to the correct location. They also contribute to the development of physics intensive therapeutic techniques, such as the stereotactic radiosurgery and prostate seed implants for cancer to name a few. The annual AAPM meeting is a great resource, providing guidance to physicists to implement the latest and greatest technology in a community hospital close to you.

ABOUT AAPM

The American Association of Physicists in Medicine (AAPM) is a scientific, educational, and professional organization of more than 6,000 medical physicists. Headquarters are located at the American Center for Physics in College Park, MD. Publications include a scientific journal ("Medical Physics"), technical reports, and symposium proceedings. See: www.aapm.org.

Jason Bardi | EurekAlert!
Further information:
http://www.aip.org
http://www.aapm.org/meetings/09AM/PRAbs.asp?mid=42&aid=11909

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>