Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Syracuse University Physicists Confirm Existence of New Type of Meson

02.05.2014

Physicists in the College of Arts and Sciences have made several important discoveries regarding the basic structure of mesons—subatomic particles long thought to be composed of one quark and one antiquark and bound together by a strong interaction.

Recently, Professor Tomasz Skwarnicki and a team of researchers proved the existence of a meson named Z(4430), with two quarks and two antiquarks, using data from the Large Hadron Collidor beauty (LHCb) Collaboration at CERN in Geneva, Switzerland.


A drawing of an LHCb Experiment

This tetraquark state was first discovered in Japan in 2007 but was later disputed by a team of researchers at Stanford University. Skwarnicki's finding was published earlier this month and has since garnered international publicity.

Quarks are hard, point-like objects that are found inside protons and neutrons and form the nucleus of an atom.

... more about:
»Antimatter »CERN »LHCb »Mesons »Physics »Quarks »Stone »baryons »energy »hadrons »protons

Now, another analysis by Syracuse University physicists—this one led by Distinguished Professor Sheldon Stone and his research associate Liming Zhang—shows two lighter, well-known mesons, originally thought to be composed of tetraquarks, that are structured like normal mesons.

Stone says that one of the particles, uniquely named the f0(980), was assumed to have four quarks because it seemed to be the only way for its mass to “make sense.”

“The four-quark states cannot be classified within the traditional quark model, where strongly interacting particles [hadrons] are formed from either quark-antiquarks pairs [mesons] or three quarks [baryons],” says Stone, who also heads up Syracuse University’s High-Energy Physics Group. “They are, therefore, called ‘exotic particles.’”

Stone points out that his and Skwarnicki's analyses are not contradictory and, together, increase what physicists know about the strong interaction that forms the basis of what holds all matter together.

Stone's finding also changes what is known about charge-parity (CP) violation, the balance of matter and antimatter in the universe. That there is a small amount of excess matter (e.g., protons, neutrons and orbiting electrons) floating around in the ether implies that something other than the Standard Model of particle physics is at play.

“Fourteen billion years ago, energy coalesced to form equal quantities of matter and antimatter,” Stone says. “But as the universe cooled and expanded, its composition changed. Antimatter all but disappeared after the Big Bang, leaving behind matter to create everything around us, from stars and galaxies to life on Earth. Something must have happened, during this process, to cause extra CP violation and, thus, form the universe as we know it. … The f0(980) is a crucial element in our studies of CP violation. Showing that it is not an exotic particle means we do not have to question the interpretation of our results."

Stone also hopes his findings may shed light on why heavy quarks are able to form four-quark particles and light ones cannot.

“How do you explain some of the interesting characteristics of f0(980), if it’s not made of four quarks?” asks Stone, whose analysis also draws on LHCb data and has been submitted for publication.

Meanwhile, the tetraquark nature of Z(4430) also has huge implications for the study of neutron stars, remnants of gravitational collapses of massive stars.

“Everything we’re doing at Syracuse University and CERN is pushing the boundaries of ‘new physics,’” Stone says. “Because we’re using large data sets, we have no choice but to use statistically powerful analyses that can measure particle properties in an unambiguous manner.”

LHCb is an international experiment, based at CERN, involving more than 800 scientists and engineers from all over the world. At CERN, Stone heads up a team of 15 physicists from Syracuse University.

Rob Enslin | Eurek Alert!
Further information:
http://news.syr.edu/syracuse-university-physicists-confirm-existence-of-new-type-of-meson-67685/

Further reports about: Antimatter CERN LHCb Mesons Physics Quarks Stone baryons energy hadrons protons

More articles from Physics and Astronomy:

nachricht New record in materials research: 1 terapascals in a laboratory
22.07.2016 | Universität Bayreuth

nachricht Mapping electromagnetic waveforms
22.07.2016 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>