Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Syracuse University Physicists Confirm Existence of New Type of Meson


Physicists in the College of Arts and Sciences have made several important discoveries regarding the basic structure of mesons—subatomic particles long thought to be composed of one quark and one antiquark and bound together by a strong interaction.

Recently, Professor Tomasz Skwarnicki and a team of researchers proved the existence of a meson named Z(4430), with two quarks and two antiquarks, using data from the Large Hadron Collidor beauty (LHCb) Collaboration at CERN in Geneva, Switzerland.

A drawing of an LHCb Experiment

This tetraquark state was first discovered in Japan in 2007 but was later disputed by a team of researchers at Stanford University. Skwarnicki's finding was published earlier this month and has since garnered international publicity.

Quarks are hard, point-like objects that are found inside protons and neutrons and form the nucleus of an atom.

... more about:
»Antimatter »CERN »LHCb »Mesons »Physics »Quarks »Stone »baryons »energy »hadrons »protons

Now, another analysis by Syracuse University physicists—this one led by Distinguished Professor Sheldon Stone and his research associate Liming Zhang—shows two lighter, well-known mesons, originally thought to be composed of tetraquarks, that are structured like normal mesons.

Stone says that one of the particles, uniquely named the f0(980), was assumed to have four quarks because it seemed to be the only way for its mass to “make sense.”

“The four-quark states cannot be classified within the traditional quark model, where strongly interacting particles [hadrons] are formed from either quark-antiquarks pairs [mesons] or three quarks [baryons],” says Stone, who also heads up Syracuse University’s High-Energy Physics Group. “They are, therefore, called ‘exotic particles.’”

Stone points out that his and Skwarnicki's analyses are not contradictory and, together, increase what physicists know about the strong interaction that forms the basis of what holds all matter together.

Stone's finding also changes what is known about charge-parity (CP) violation, the balance of matter and antimatter in the universe. That there is a small amount of excess matter (e.g., protons, neutrons and orbiting electrons) floating around in the ether implies that something other than the Standard Model of particle physics is at play.

“Fourteen billion years ago, energy coalesced to form equal quantities of matter and antimatter,” Stone says. “But as the universe cooled and expanded, its composition changed. Antimatter all but disappeared after the Big Bang, leaving behind matter to create everything around us, from stars and galaxies to life on Earth. Something must have happened, during this process, to cause extra CP violation and, thus, form the universe as we know it. … The f0(980) is a crucial element in our studies of CP violation. Showing that it is not an exotic particle means we do not have to question the interpretation of our results."

Stone also hopes his findings may shed light on why heavy quarks are able to form four-quark particles and light ones cannot.

“How do you explain some of the interesting characteristics of f0(980), if it’s not made of four quarks?” asks Stone, whose analysis also draws on LHCb data and has been submitted for publication.

Meanwhile, the tetraquark nature of Z(4430) also has huge implications for the study of neutron stars, remnants of gravitational collapses of massive stars.

“Everything we’re doing at Syracuse University and CERN is pushing the boundaries of ‘new physics,’” Stone says. “Because we’re using large data sets, we have no choice but to use statistically powerful analyses that can measure particle properties in an unambiguous manner.”

LHCb is an international experiment, based at CERN, involving more than 800 scientists and engineers from all over the world. At CERN, Stone heads up a team of 15 physicists from Syracuse University.

Rob Enslin | Eurek Alert!
Further information:

Further reports about: Antimatter CERN LHCb Mesons Physics Quarks Stone baryons energy hadrons protons

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>