Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swiss space research reaches for the sky

29.09.2016

The Rosetta mission is coming to an end, but the next expeditions across our solar system are ready for lift-off, carrying with them a number of state-of-the-art devices made in Switzerland.

After a decade of travel in outer space to reach the comet Chury, and two years spent studying it, the Rosetta mission comes to an end this Friday. The mission has been a showcase for the numerous Swiss SMEs that have participated in the construction of precision instruments and a highlight for the University of Bern. Scientists from its Physics Institute developed a key tool for the mission: Rosina, an extremely sensitive detector that can analyse the composition of the comet’s nucleus and atmosphere.


The Rosetta mission is coming to an end, but the next expeditions across our solar system are ready for lift-off, carrying with them a number of state-of-the-art devices made in Switzerland.

The Rosetta success story demonstrates the crucial role played by fundamental research: for more than two decades, 18 grants awarded by the Swiss National Science Foundation (SNSF) with some 23 million Swiss francs have contributed directly or indirectly to the Rosetta mission.

But Rosetta is only one example of how research in Switzerland has contributed to space science. The SNSF is currently funding a number of remarkable projects, some of which will launch very soon.

Bern on the Moon, Windisch around the Sun

A key player in international space science, the University of Bern is developing an important chemical analysis tool for the Russian Luna-Resurs probe, due to land on the Moon soon after 2020, as well as for an orbiter of ESA (BepiColombo), which will explore Mercury in 2024 after a six-year journey. The Bern team also acts as co-principal investigator of the Juice mission, which will travel towards Jupiter for eight years to study Ganymede, Callisto and Europa, the three largest moons of the giant planet, starting 2030.

The University of Bern is also coordinating the construction of the Cheops satellite, which will be launched in early 2018 to study exoplanets. Once completed, Cheops will be the first Swiss satellite ever built for an ESA mission. Its construction is mainly financed by the ESA Prodex Programme through the Swiss government’s Space Office, while personnel and research costs are covered by the SNSF.

Studying the Sun is another key goal of space science. Solar flares, for instance, can cause geomagnetic storms that are liable to disturb telecommunications and the electricity grid on Earth. The University of Applied Sciences FHNW in Windisch (AG) is leading the Stix project with the support of Prodex. Their X-ray camera will be carried on board the ESA Solar Orbiter, to be launched in 2017. It will settle into a low orbit around the Sun after a three-year journey. The FHNW team is also building Misolfa, an imager on an Italian satellite, which will study solar flares during the next solar maximum due to start around 2020.

Waves, debris and GPS

A team at ETH Zurich has developed electronic systems for the Lisa Pathfinder mission. Currently travelling in sync with the Earth some 1.5 million kilometres away, the spacecraft is testing core technologies for the follow-up eLisa mission. The latter will observe gravitational waves, whose discovery in February 2016 made headlines across the world.

Scientists at the Astronomy Institute of the University of Bern are using the nearby Zimmerwald Observatory to accurately monitor satellites and in particular space debris, a constant threat to spacecrafts in orbit. They are also developing tools to determine with greater precision the location of the satellites offering global positioning services, such the GPS (operated by the US), Galileo (EU) and Glonass (Russia).

Importantly, space science is also developing tools to study our own planet: for instance, satellite imagery is used to study forests and crops, the effects of climate change, or geology. Scientists supported by the SNSF are developing techniques to make such remote sensing data more accurate.

National coordination

"Space missions bring back unique knowledge that gives us a deeper understanding of our place in the Universe, and often yields practical benefits for our lives on Earth,” says astronomer and SNSF research councillor Simon Lilly from ETH Zurich. “But they also have a unique ability to inspire people, because they are the manifestation of mankind's innermost need to explore, and to see places and landscapes never seen before."

Space missions sometimes span several decades and represent a major investment by the countries concerned. “Operating scientific instruments in space places extraordinary demands on materials and reliability and the necessary expertise must be built up over years,” says Lilly. “The projects funded by the SNSF have gone through a rigorous and highly competitive selection process.”

In the Swiss model to support space research, hardware and technical development are mostly funded by the Swiss Space Office (SERI/SSO) under the Prodex Programme, while scientific personnel and data analysis are funded by the SNSF. “It is crucial to coordinate the funding of space science and scientific infrastructures across Switzerland,” says Tristan Maillard, head of natural sciences at the SNSF Administrative Offices. “This is the only way to ensure the sustainability of these important activities.”


Contact:

Daniel Saraga
Head of Science Communication
Swiss National Science Foundation
Wildhainweg 3
CH-3001 Bern
Phone: +41 31 308 23 76
E-mail: daniel.saraga@snf.ch

Weitere Informationen:

http://www.snf.ch/SiteCollectionDocuments/Swiss_Space_Research_List.pdf 'More information on 15 Swiss space research projects'
http://spaceresearch.scnatweb.ch/ 'Swiss Committee on Space Research'
http://spaceresearch.scnatweb.ch/ 'SERI Space'
http://www.srv-ch.org/en/ 'Swiss Space Association'

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft
Further information:
http://www.snf.ch

Further reports about: ESA Mercury Rosetta Rosetta mission SNF geomagnetic storm satellites solar flares space research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>