Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swiss space research reaches for the sky

29.09.2016

The Rosetta mission is coming to an end, but the next expeditions across our solar system are ready for lift-off, carrying with them a number of state-of-the-art devices made in Switzerland.

After a decade of travel in outer space to reach the comet Chury, and two years spent studying it, the Rosetta mission comes to an end this Friday. The mission has been a showcase for the numerous Swiss SMEs that have participated in the construction of precision instruments and a highlight for the University of Bern. Scientists from its Physics Institute developed a key tool for the mission: Rosina, an extremely sensitive detector that can analyse the composition of the comet’s nucleus and atmosphere.


The Rosetta mission is coming to an end, but the next expeditions across our solar system are ready for lift-off, carrying with them a number of state-of-the-art devices made in Switzerland.

The Rosetta success story demonstrates the crucial role played by fundamental research: for more than two decades, 18 grants awarded by the Swiss National Science Foundation (SNSF) with some 23 million Swiss francs have contributed directly or indirectly to the Rosetta mission.

But Rosetta is only one example of how research in Switzerland has contributed to space science. The SNSF is currently funding a number of remarkable projects, some of which will launch very soon.

Bern on the Moon, Windisch around the Sun

A key player in international space science, the University of Bern is developing an important chemical analysis tool for the Russian Luna-Resurs probe, due to land on the Moon soon after 2020, as well as for an orbiter of ESA (BepiColombo), which will explore Mercury in 2024 after a six-year journey. The Bern team also acts as co-principal investigator of the Juice mission, which will travel towards Jupiter for eight years to study Ganymede, Callisto and Europa, the three largest moons of the giant planet, starting 2030.

The University of Bern is also coordinating the construction of the Cheops satellite, which will be launched in early 2018 to study exoplanets. Once completed, Cheops will be the first Swiss satellite ever built for an ESA mission. Its construction is mainly financed by the ESA Prodex Programme through the Swiss government’s Space Office, while personnel and research costs are covered by the SNSF.

Studying the Sun is another key goal of space science. Solar flares, for instance, can cause geomagnetic storms that are liable to disturb telecommunications and the electricity grid on Earth. The University of Applied Sciences FHNW in Windisch (AG) is leading the Stix project with the support of Prodex. Their X-ray camera will be carried on board the ESA Solar Orbiter, to be launched in 2017. It will settle into a low orbit around the Sun after a three-year journey. The FHNW team is also building Misolfa, an imager on an Italian satellite, which will study solar flares during the next solar maximum due to start around 2020.

Waves, debris and GPS

A team at ETH Zurich has developed electronic systems for the Lisa Pathfinder mission. Currently travelling in sync with the Earth some 1.5 million kilometres away, the spacecraft is testing core technologies for the follow-up eLisa mission. The latter will observe gravitational waves, whose discovery in February 2016 made headlines across the world.

Scientists at the Astronomy Institute of the University of Bern are using the nearby Zimmerwald Observatory to accurately monitor satellites and in particular space debris, a constant threat to spacecrafts in orbit. They are also developing tools to determine with greater precision the location of the satellites offering global positioning services, such the GPS (operated by the US), Galileo (EU) and Glonass (Russia).

Importantly, space science is also developing tools to study our own planet: for instance, satellite imagery is used to study forests and crops, the effects of climate change, or geology. Scientists supported by the SNSF are developing techniques to make such remote sensing data more accurate.

National coordination

"Space missions bring back unique knowledge that gives us a deeper understanding of our place in the Universe, and often yields practical benefits for our lives on Earth,” says astronomer and SNSF research councillor Simon Lilly from ETH Zurich. “But they also have a unique ability to inspire people, because they are the manifestation of mankind's innermost need to explore, and to see places and landscapes never seen before."

Space missions sometimes span several decades and represent a major investment by the countries concerned. “Operating scientific instruments in space places extraordinary demands on materials and reliability and the necessary expertise must be built up over years,” says Lilly. “The projects funded by the SNSF have gone through a rigorous and highly competitive selection process.”

In the Swiss model to support space research, hardware and technical development are mostly funded by the Swiss Space Office (SERI/SSO) under the Prodex Programme, while scientific personnel and data analysis are funded by the SNSF. “It is crucial to coordinate the funding of space science and scientific infrastructures across Switzerland,” says Tristan Maillard, head of natural sciences at the SNSF Administrative Offices. “This is the only way to ensure the sustainability of these important activities.”


Contact:

Daniel Saraga
Head of Science Communication
Swiss National Science Foundation
Wildhainweg 3
CH-3001 Bern
Phone: +41 31 308 23 76
E-mail: daniel.saraga@snf.ch

Weitere Informationen:

http://www.snf.ch/SiteCollectionDocuments/Swiss_Space_Research_List.pdf 'More information on 15 Swiss space research projects'
http://spaceresearch.scnatweb.ch/ 'Swiss Committee on Space Research'
http://spaceresearch.scnatweb.ch/ 'SERI Space'
http://www.srv-ch.org/en/ 'Swiss Space Association'

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft
Further information:
http://www.snf.ch

Further reports about: ESA Mercury Rosetta Rosetta mission SNF geomagnetic storm satellites solar flares space research

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>