Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swirls in remnants of Big Bang may hold clues to universe’s infancy

16.12.2013
South Pole Telescope scientists have detected for the first time a subtle distortion in the oldest light in the universe, which may help reveal secrets about the earliest moments in the universe’s formation.

The scientists observed twisting patterns in the polarization of the cosmic microwave background—light that last interacted with matter very early in the history of the universe, less than 400,000 years after the Big Bang.

These patterns, known as “B modes,” are caused by gravitational lensing, a phenomenon that occurs when the trajectory of light is bent by massive objects, much like a lens focuses light. Early today, Physics World magazine heralded the result as one of the top 10 physics breakthroughs of 2013.

A multi-institutional collaboration of researchers led by John Carlstrom, the S. Chandrasekhar Distinguished Service Professor in Astronomy & Astrophysics at the University of Chicago, made the discovery. They announced their findings in a paper published in the journal Physical Review Letters—using the first data from SPTpol, a polarization-sensitive camera installed on the telescope in January 2012.

“The detection of B-mode polarization by South Pole Telescope is a major milestone, a technical achievement that indicates exciting physics to come,” said Carlstrom, who also is deputy director of the Kavli Institute for Cosmological Physics. The cosmic microwave background is a sea of photons (light particles) left over from the Big Bang that pervades all of space, at a temperature of minus 270 degrees Celsius—a mere 3 degrees above absolute zero.

Measurements of this ancient light have already given physicists a wealth of knowledge about the properties of the universe. Tiny variations in temperature of the light have been painstakingly mapped across the sky by multiple experiments, and scientists are gleaning even more information from polarized light. Light is polarized when its electromagnetic waves are preferentially oriented in a particular direction. Light from the cosmic microwave background is polarized mainly due to the scattering of photons off of electrons in the early universe, through the same process by which light is polarized as it reflects off the surface of a lake or the hood of a car.

The polarization patterns that result are of a swirl-free type, known as “E modes,” which have proven easier to detect than the fainter B modes, and were first measured a decade ago by a collaboration of researchers using the Degree Angular Scale Interferometer, another UChicago-led experiment. Simple scattering can’t generate B modes, which instead emerge through a more complex process—hence scientists’ interest in measuring them. Gravitational lensing, it has long been predicted, can twist E modes into B modes as photons pass by galaxies and other massive objects on their way toward earth.

This expectation has now been confirmed. To tease out the B modes in their data, the scientists used a previously measured map of the distribution of mass in the universe to determine where the gravitational lensing should occur. They combined their measurement of E modes with the mass distribution to provide a template of the expected twisting into B modes.

The scientists are currently working with another year of data to further refine their measurement of B modes. The careful study of such B modes will help physicists better understand the universe. The patterns can be used to map out the distribution of mass, thereby more accurately defining cosmologically important properties like the masses of neutrinos, tiny elementary particles prevalent throughout the cosmos.

Similar, more elusive B modes would provide dramatic evidence of inflation, the theorized turbulent period in the moments after the Big Bang when the universe expanded extremely rapidly. Inflation is a well-regarded theory among cosmologists because its predictions agree with observations, but thus far there is not a definitive confirmation of the theory. Measuring B modes generated by inflation is a possible way to alleviate lingering doubt.

“The detection of a primordial B-mode polarization signal in the microwave background would amount to finding the first tremors of the Big Bang,” said the study’s lead author, Duncan Hanson, a postdoctoral scientist at McGill University in Canada. B modes from inflation are caused by gravitational waves. These ripples in space-time are generated by intense gravitational turmoil, conditions that would have existed during inflation. These waves, stretching and squeezing the fabric of the universe, would give rise to the telltale twisted polarization patterns of B modes.

Measuring the resulting polarization would not only confirm the theory of inflation—a huge scientific achievement in itself—but would also give scientists information about physics at very high energies—much higher than can be achieved with particle accelerators. The measurement of B modes from gravitational lensing is an important first step in the quest to measure inflationary B modes. In inflationary B mode searches, lensing B modes show up as noise.

“The new result shows that this noise can be accounted for and subtracted off so that scientists can search for and hopefully measure the inflationary B modes underneath,” Hanson said. “The lensing signal itself can also be used by itself to learn about the distribution of mass in the universe.” - See more at: http://news.uchicago.edu/article/2013/12/13/swirls-remnants-big-bang-may-hold-clues-universe-s-infancy#sthash.rpjjz1Yw.dpuf

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>