Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swedish instruments to study the Martian atmosphere in collaboration with Russia and China

07.11.2011
The Russian Phobos-Grunt spacecraft will be launched together with its Chinese sub-satellite Yinghuo-1 towards Mars from the Baikonur Cosmodrome in Kazakhstan on Tuesday evening (8 November 2011) CET, bearing three satellite instruments developed and built in Sweden.

The dual spacecraft is scheduled to arrive at Mars in October 2012. After insertion into orbit the two spacecraft will separate. Yinghuo-1 will stay on a highly elliptical orbit (800km x 80,000 km), whereas Phobos-Grunt will enter a more circular orbit in order to approach and land on the Martian moon Phobos.


Phobos-Grunt
Image: IKI


The two YPP ion mass analysers, YPP-i1 and YPP-i2
Photo: Swedish Institute of Space Physics, IRF

The Swedish Institute for Space Physics (IRF) in Kiruna has provided three identical ion mass analysers for this mission. The Detector for Ions at Mars (DIM) is mounted on the main Phobos-Grunt spacecraft. The DIM sensor was developed and built at IRF, while the associated digital processing unit was built at the Russian Space Research Institute (IKI).

Yinghuo-1 carries a plasma package (Yinghuo Plasma Package, YPP) consisting of two ion mass analysers and an electron sensor. The package is a joint development between IRF and the National Space Science Center (NSSC) in China. IRF developed and built the ion mass analysers (YPP-i1 and YPP-i2), while NSSC has provided the associated digital processing units and the electron sensor. The Space Research Institute (IWF) in Graz, Austria, participates in the scientific aspects of the Yinghuo Plasma Package.

All three ion sensors will simultaneously investigate the interaction between the solar wind (a stream of charged particles from the sun) and the Martian atmosphere from different vantage points in space.

"We already have the ASPERA-3 instrument orbiting Mars on the European spacecraft Mars Express," says Dr Martin Wieser of IRF. "With all of these instruments in place we will be able to do multi-point plasma measurements from orbiting spacecraft for the first time at Mars."

Martin Wieser adds, "And thanks to Yinghuo's elliptical orbit, the Yinghuo Plasma Package will be able to explore the distant plasma tail of Mars -- another first."

More information:
Dr Martin Wieser, scientist and project leader, IRF, tel. +46-980-79198, martin.wieser*irf.se

Rick McGregor, Information Officer, IRF, tel. +46-980-79178, rick.mcgregor*irf.se

Rick McGregor | idw
Further information:
http://www.irf.se/link/dim_ypp_page
http://www.russianspaceweb.com/phobos_grunt_2011.html#baikonur
http://phobos.cosmos.ru/index.php?id=285&L=2

Further reports about: DIM IRF Mars Martian Winds NSSC Phobos-Grunt Plasma technology Space Yinghuo Yinghuo-1 elliptical orbit

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>