Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Survey finds public support for geoengineering research

24.10.2011
Research on geoengineering appears to have broad public support, as a new, internationally-representative survey revealed that 72 per cent of respondents approved research into the climate-manipulating technique.

The study, published today, 24 October, in IOP Publishing's journal Environmental Research Letters, is the first international survey on public perception of geoengineering and solar radiation management (SRM) and shows that these terms are becoming increasingly embedded into public discourse.

Public awareness of geoengineering is remarkably broad. Eight per cent of the sample were able to provide a correct definition of geoengineering, an increase on previous estimates; however, 45 per cent of the sample correctly defined the alternative term "climate engineering", adding weight to the argument that "geoengineering" may be misleading and difficult to understand.

The 18 question, internet-based survey was completed by 3,105 participants from Canada, the United Kingdom and the United States at the end of 2010, and was designed to ascertain how widespread public knowledge of geoengineering was and how the public actually perceived it.

Professor David Keith of Harvard University said: "Some reports have suggested that opposition to geoengineering is associated with environmentalists, but our results do not support this view.

"We found that geoengineering divides people along unusual lines. Support for geoengineering is spread across the political spectrum and is linked to support for science concern about climate change.

"The strongest opposition comes from people who self-identify as politically conservative, who are distrustful of government and other elite institutions, and who doubt the very idea that there is a climate problem."

Geoengineering is the process of deliberately manipulating the Earth's climate to counteract the effects of global warming, whilst SRM is a type of geoengineering that seeks to reflect sunlight by various means to reduce warming.

The Stratospheric Particle Injection for Climate Engineering (Spice) project is a well-documented example of SRM that intends to release sulphate-based particles into the troposphere in attempt to reflect the light rays from the sun and reduce warming.

The researchers, from the University of Calgary, Harvard University and Simon Fraser University, publish their work at a critical time for Spice as a test project scheduled to take place in the UK was recently delayed by six months in order to explore and discuss the social aspects associated with geoengineering.

Interestingly, global warming was not a key factor in determining an individual's support or opposition of SRM. The researchers hypothesised that seeing climate change as an important issue, and its causes anthropogenic, would be an obvious predictor of support.

Ashley Mercer, lead author of the study, said: "I think this is the first in line of many studies that will show that SRM intersects with people's political and environmental attitudes in surprising ways.

"The results suggest that dialogue surrounding this topic needs to be broadened to include ideas of risk, values and trade-off."

From 24 October, this paper can be downloaded from http://iopscience.iop.org/1748-9326/6/4/044006

Notes to Editors

Contact

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Press Officer, Michael Bishop:
Tel: 0117 930 1032
E-mail: Michael.bishop@iop.org
Public understanding of solar radiation management
2. The published version of the paper 'Public understanding of solar radiation management' (A M Mercer, D W Keith and J D Sharp 2011 Environ. Res. Lett. 6 044006) will be freely available online from 24 October. It will be available at http://iopscience.iop.org/1748-9326/6/4/044006

Environmental Research Letters

3. Environmental Research Letters is an open access journal that covers all of environmental science, providing a coherent and integrated approach including research articles, perspectives and editorials.

IOP Publishing

4. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP.Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to http://ioppublishing.org/.

The Institute of Physics

5. The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policymakers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications. Go to www.iop.org

Michael Bishop | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>