Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supermassive black holes may frequently roam galaxy centers

26.05.2010
Rochester Institute of Technology, Florida Institute of Technology and University of Sussex plumb Hubble data

A team of astronomy researchers at Rochester Institute of Technology, Florida Institute of Technology and University of Sussex in the United Kingdom, find that the supermassive black hole (SMBH) at the center of the most massive local galaxy, M87, is not where it was expected. Their research, conducted using the Hubble Space Telescope, concludes that the supermassive black hole in M87 is displaced from the galaxy center.

The most likely cause for this supermassive black hole to be off center is a previous merger between two older, less massive, black holes. "We also find, however, that the iconic M87 jet may have pushed the SMBH away from the galaxy center," says Daniel Batcheldor, Florida Tech assistant professor in the Department of Physics and Space Sciences, who led the investigation.

The study of M87 is part of a wider Hubble Space Telescope project directed by Andrew Robinson, professor of physics at RIT. "What may well be the most interesting thing about this work is the possibility that what we found is a signpost of a black hole merger, which is of interest to people looking for gravitational waves and for people modeling these systems as a demonstration that black holes really do merge," says Robinson. "The theoretical prediction is that when two black holes merge, the newly combined black hole receives a 'kick' due to the emission of gravitational waves, which can displace it from the center of the galaxy."

David Merritt, professor of physics at RIT, adds: "Once kicked, a supermassive black hole can take millions or billions of years to return to rest, especially at the center of a large, diffuse galaxy like M87. So searching for displacements is an effective way to constrain the merger history of galaxies."

Jets, such as the one in M87, are commonly found in a class of objects called Active Galactic Nuclei. It is commonly believed that supermassive black holes can become active as a result of the merger between two galaxies, the in fall of material into the center of the galaxy, and the subsequent merger between their black holes. Therefore, it is very possible that this finding could also be linked to how active galaxies—including quasars, the most luminous objects in the universe—are born and how their jets are formed.

This research will be presented at the American Astronomical Society (AAS) Conference on May 25 in Miami, Fla. It will also be published in The Astrophysical Journal Letters peer-reviewed scientific journal.

Because many galaxies have similar properties to M87, it is likely that supermassive black holes are commonly offset from their host galaxy centers. The potential offsets, however, would be very subtle and researchers would rely on the Hubble Space Telescope to detect them.

"Unfortunately, the highest spatial resolution camera onboard HST could not be revived during the recent servicing mission. This means we have to rely on the huge archive of HST data to find more of these vagrant supermassive black holes, as we did for M87," added Batcheldor.

Regardless of the displacement mechanism, the implication of this result is a necessary shift in the classic supermassive black hole paradigm; no longer can it be assumed that all supermassive black holes reside at the centers of their host galaxies. This may result in some interesting impacts on a number of fundamental astronomical areas, and some interesting questions.

For example, how would an accreting (growing by the gravitational attraction of matter) or quiescent supermassive black hole interact with the surrounding nuclear environment as it moves through the bulge? What are the effects on the standard orientation-based unified model of active galactic nuclei and how have dynamical models of the supermassive black hole mass been centered if the supermassive black hole is quiescent?

Especially thought-provoking, added Eric Perlman, associate professor of physics and space sciences at Florida Tech, is that our own galaxy is expected to merge with the Andromeda galaxy in about three billion years. "The result of that merger will likely be an active elliptical galaxy, similar to M87. Both our galaxy and Andromeda have supermassive black holes in their centers, so our result suggests that after the merger, the supermassive black hole may wander in the galaxy's nucleus for billions of years."

David Axon, dean of mathematical and physical sciences at Sussex, concludes by saying, "In current galaxy formation scenarios galaxies are thought to be assembled by a process of merging. We should therefore expect that binary black holes and post coalescence recoiling black holes, like that in M87, are very common in the cosmos."

Researchers on the project are Daniel Batcheldor and Eric Perlman of Florida Institute of Technology; Andrew Robinson and David Merritt of RIT; and David Axon, dean of mathematical and physical sciences at University of Sussex in the United Kingdom and research professor at RIT. All are authors of the paper, "A Displaced Supermassive Black Hole in M87."

For more information, contact Andrew Robinson at (585) 475-2726 or axrsps@rit.edu, or Daniel Batcheldor at (321) 674-7717 or dbatcheldor@fit.edu. A Web site with more information is also available: http://quasar.astro.fit.edu/~perlman/blackhole/. The research team's paper is available here: http://arXiv.org/abs/1005.2173.

About RIT: Rochester Institute of Technology is internationally recognized for academic leadership in computing, engineering, imaging technology, and fine and applied arts, in addition to unparalleled support services for students with hearing loss. Nearly 16,800 full- and part-time students are enrolled in more than 200 career-oriented and professional programs at RIT, and its cooperative education program is one of the oldest and largest in the nation.

For two decades, U.S. News & World Report has ranked RIT among the nation's leading comprehensive universities. RIT is featured in The Princeton Review's 2010 edition of The Best 371 Colleges and in Barron's Best Buys in Education. The Chronicle of Higher Education recognizes RIT as a "Great College to Work For."

Susan Gawlowicz | EurekAlert!
Further information:
http://www.rit.edu

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>