Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Supermassive black holes may frequently roam galaxy centers

Rochester Institute of Technology, Florida Institute of Technology and University of Sussex plumb Hubble data

A team of astronomy researchers at Rochester Institute of Technology, Florida Institute of Technology and University of Sussex in the United Kingdom, find that the supermassive black hole (SMBH) at the center of the most massive local galaxy, M87, is not where it was expected. Their research, conducted using the Hubble Space Telescope, concludes that the supermassive black hole in M87 is displaced from the galaxy center.

The most likely cause for this supermassive black hole to be off center is a previous merger between two older, less massive, black holes. "We also find, however, that the iconic M87 jet may have pushed the SMBH away from the galaxy center," says Daniel Batcheldor, Florida Tech assistant professor in the Department of Physics and Space Sciences, who led the investigation.

The study of M87 is part of a wider Hubble Space Telescope project directed by Andrew Robinson, professor of physics at RIT. "What may well be the most interesting thing about this work is the possibility that what we found is a signpost of a black hole merger, which is of interest to people looking for gravitational waves and for people modeling these systems as a demonstration that black holes really do merge," says Robinson. "The theoretical prediction is that when two black holes merge, the newly combined black hole receives a 'kick' due to the emission of gravitational waves, which can displace it from the center of the galaxy."

David Merritt, professor of physics at RIT, adds: "Once kicked, a supermassive black hole can take millions or billions of years to return to rest, especially at the center of a large, diffuse galaxy like M87. So searching for displacements is an effective way to constrain the merger history of galaxies."

Jets, such as the one in M87, are commonly found in a class of objects called Active Galactic Nuclei. It is commonly believed that supermassive black holes can become active as a result of the merger between two galaxies, the in fall of material into the center of the galaxy, and the subsequent merger between their black holes. Therefore, it is very possible that this finding could also be linked to how active galaxies—including quasars, the most luminous objects in the universe—are born and how their jets are formed.

This research will be presented at the American Astronomical Society (AAS) Conference on May 25 in Miami, Fla. It will also be published in The Astrophysical Journal Letters peer-reviewed scientific journal.

Because many galaxies have similar properties to M87, it is likely that supermassive black holes are commonly offset from their host galaxy centers. The potential offsets, however, would be very subtle and researchers would rely on the Hubble Space Telescope to detect them.

"Unfortunately, the highest spatial resolution camera onboard HST could not be revived during the recent servicing mission. This means we have to rely on the huge archive of HST data to find more of these vagrant supermassive black holes, as we did for M87," added Batcheldor.

Regardless of the displacement mechanism, the implication of this result is a necessary shift in the classic supermassive black hole paradigm; no longer can it be assumed that all supermassive black holes reside at the centers of their host galaxies. This may result in some interesting impacts on a number of fundamental astronomical areas, and some interesting questions.

For example, how would an accreting (growing by the gravitational attraction of matter) or quiescent supermassive black hole interact with the surrounding nuclear environment as it moves through the bulge? What are the effects on the standard orientation-based unified model of active galactic nuclei and how have dynamical models of the supermassive black hole mass been centered if the supermassive black hole is quiescent?

Especially thought-provoking, added Eric Perlman, associate professor of physics and space sciences at Florida Tech, is that our own galaxy is expected to merge with the Andromeda galaxy in about three billion years. "The result of that merger will likely be an active elliptical galaxy, similar to M87. Both our galaxy and Andromeda have supermassive black holes in their centers, so our result suggests that after the merger, the supermassive black hole may wander in the galaxy's nucleus for billions of years."

David Axon, dean of mathematical and physical sciences at Sussex, concludes by saying, "In current galaxy formation scenarios galaxies are thought to be assembled by a process of merging. We should therefore expect that binary black holes and post coalescence recoiling black holes, like that in M87, are very common in the cosmos."

Researchers on the project are Daniel Batcheldor and Eric Perlman of Florida Institute of Technology; Andrew Robinson and David Merritt of RIT; and David Axon, dean of mathematical and physical sciences at University of Sussex in the United Kingdom and research professor at RIT. All are authors of the paper, "A Displaced Supermassive Black Hole in M87."

For more information, contact Andrew Robinson at (585) 475-2726 or, or Daniel Batcheldor at (321) 674-7717 or A Web site with more information is also available: The research team's paper is available here:

About RIT: Rochester Institute of Technology is internationally recognized for academic leadership in computing, engineering, imaging technology, and fine and applied arts, in addition to unparalleled support services for students with hearing loss. Nearly 16,800 full- and part-time students are enrolled in more than 200 career-oriented and professional programs at RIT, and its cooperative education program is one of the oldest and largest in the nation.

For two decades, U.S. News & World Report has ranked RIT among the nation's leading comprehensive universities. RIT is featured in The Princeton Review's 2010 edition of The Best 371 Colleges and in Barron's Best Buys in Education. The Chronicle of Higher Education recognizes RIT as a "Great College to Work For."

Susan Gawlowicz | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>