Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New superheavy elements can be uniquely identified

02.09.2013
International research collaboration at GSI including researchers of Mainz University uses element 115 to highlight a way for taking new superheavy elements' fingerprints

An international team of researchers presents fresh evidence that confirms the existence of the superheavy chemical element 115. The experiment was conducted at the GSI Helmholtz Center for Heavy Ion Research, an accelerator laboratory located in Darmstadt.


photo: G. Otto, GSI Helmholtz Center for Heavy Ion Research

GSI linear accelerator

Under the lead of physicists from Lund University in Sweden, the group, which included researchers from Johannes Gutenberg University Mainz (JGU) and the Helmholtz Institute Mainz (HIM), was able to present a way to directly identify new superheavy elements. Elements beyond atomic number 104 are referred to as superheavy elements. They are produced at accelerator laboratories and generally decay after a short time. Initial reports about the discovery of an element with atomic number 115 were released from a research center in Russia in 2004. The then presented indirect evidence for the new element, however, was insufficient for an official discovery.

For the new experiment, scientists at the Institute of Nuclear Chemistry at Mainz University took a sample of the exotic element americium. They deposited an americium layer on a thin foil, which was subsequently bombarded with calcium ions at the GSI facility. For the first time, the exploitation of a new detector system allowed registering photons along with the alpha-decay of the new element and its daughter products. Measured photon energies correspond to those expected for X-rays from these products and thus serve as the element's fingerprint.

"This can be regarded as one of the most important experiments in the field in recent years, because at last it is clear that even the heaviest elements' fingerprints can be taken", agreed Professor Dirk Rudolph from Lund University in Sweden and Professor Christoph Düllmann, professor at Mainz University and leading scientist at GSI Darmstadt and HIM. "The result gives high confidence to previous reports. It also lays the basis for future measurements of this kind."

The element 115 is yet to be named: a committee comprising members of the international unions of pure and applied physics and chemistry will review the new findings and decide whether further experiments are needed to acknowledge the discovery of the element. Only after such final acceptance, a name may be proposed by the discoverers.

Besides the X-ray events, the researchers have also obtained data giving them a deeper insight into the structure and properties of the heaviest currently known atomic nuclei. This paves the way towards improved predictions for properties of nuclei beyond the border of current knowledge.

The new findings will soon be presented in the scientific journal The Physical Review Letters.

Dr. Christoph Düllmann | EurekAlert!
Further information:
http://www.uni-mainz.de

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>