Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New superheavy elements can be uniquely identified

02.09.2013
International research collaboration at GSI including researchers of Mainz University uses element 115 to highlight a way for taking new superheavy elements' fingerprints

An international team of researchers presents fresh evidence that confirms the existence of the superheavy chemical element 115. The experiment was conducted at the GSI Helmholtz Center for Heavy Ion Research, an accelerator laboratory located in Darmstadt.


photo: G. Otto, GSI Helmholtz Center for Heavy Ion Research

GSI linear accelerator

Under the lead of physicists from Lund University in Sweden, the group, which included researchers from Johannes Gutenberg University Mainz (JGU) and the Helmholtz Institute Mainz (HIM), was able to present a way to directly identify new superheavy elements. Elements beyond atomic number 104 are referred to as superheavy elements. They are produced at accelerator laboratories and generally decay after a short time. Initial reports about the discovery of an element with atomic number 115 were released from a research center in Russia in 2004. The then presented indirect evidence for the new element, however, was insufficient for an official discovery.

For the new experiment, scientists at the Institute of Nuclear Chemistry at Mainz University took a sample of the exotic element americium. They deposited an americium layer on a thin foil, which was subsequently bombarded with calcium ions at the GSI facility. For the first time, the exploitation of a new detector system allowed registering photons along with the alpha-decay of the new element and its daughter products. Measured photon energies correspond to those expected for X-rays from these products and thus serve as the element's fingerprint.

"This can be regarded as one of the most important experiments in the field in recent years, because at last it is clear that even the heaviest elements' fingerprints can be taken", agreed Professor Dirk Rudolph from Lund University in Sweden and Professor Christoph Düllmann, professor at Mainz University and leading scientist at GSI Darmstadt and HIM. "The result gives high confidence to previous reports. It also lays the basis for future measurements of this kind."

The element 115 is yet to be named: a committee comprising members of the international unions of pure and applied physics and chemistry will review the new findings and decide whether further experiments are needed to acknowledge the discovery of the element. Only after such final acceptance, a name may be proposed by the discoverers.

Besides the X-ray events, the researchers have also obtained data giving them a deeper insight into the structure and properties of the heaviest currently known atomic nuclei. This paves the way towards improved predictions for properties of nuclei beyond the border of current knowledge.

The new findings will soon be presented in the scientific journal The Physical Review Letters.

Dr. Christoph Düllmann | EurekAlert!
Further information:
http://www.uni-mainz.de

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>