Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sun Block for the Big Dog

27.03.2013
An international team of astronomers, including researchers from the Max Planck Institute for Radio Astronomy and from the University of Cologne, discovered two titanium oxides, TiO and TiO2, at radio wavelengths using telescope arrays in the USA and in France. The detection was made in the environment of VY Canis Majoris, a giant star close to the end of its life.
The discovery was made in the course of a study of a spectacular star, VY Canis Majoris or VY CMa for short, which is a variable star located in the constellation Canis Major (Greater Dog). "VY CMa is not an ordinary star, it is one of the largest stars known, and it is close the end of its life," says Tomasz Kamiñski from the Max Planck Institute for Radio Astronomy (MPIfR). In fact, with a size of about one to two thousand times that of the Sun, it could extend out to the orbit of Saturn if it were placed in the center of our Solar System.

The star ejects large quantities of material which forms a dusty nebula. Figure 1 shows the reflection nebula of VY CMa which is seen because of the small dust particles that form around it which reflect light from the central star. The complexity of this nebula has been puzzling astronomers for decades. It has been formed as a result of stellar wind, but it is not understood well why it is so far from having a spherical shape. Neither is known what physical process blows the wind, i.e. what lifts the material up from the stellar surface and makes it expand. "The fate of VY CMa is to explode as a supernova, but it is not known exactly when it will happen", adds Karl Menten, head of the "Millimeter and Submillimeter Astronomy" Department at MPIfR.

Observations at different wavelengths provide different pieces of information which is characteristic for atomic and molecular gas and from which physical properties of an astronomical object can be derived. Each molecule has a characteristic set of lines, something like a 'bar code', that allows to identify what molecules exist in the nebula. "Emission at short radio wavelengths, in so-called submillimeter waves, is particularly useful for such studies of molecules", says Sandra Brünken from the University of Cologne. "The identification of molecules is easier and usually a larger abundance of molecules can be observed than at other parts of the electromagnetic spectrum."

The research team observed TiO and TiO2 for the first time at radio wavelengths. In fact, titanium dioxide has been seen in space unambiguously for the first time. It is known from every-day life as the main component of the commercially most important white pigment (known by painters as "titanium white") or as an ingredient in sunscreens. It is also quite possible that the reader consumed some amounts of it as it is used to color food (coded as E171 in the labels). However, stars, especially the coolest of them, are expected to eject large quantities of titanium oxides, which, according to theory, form at relatively high temperatures close to the star. "They tend to cluster together to form dust particles visible in the optical or in the infrared," says Nimesh Patel from the Harvard-Smithsonian Center for Astrophysics. "And the catalytic properties of TiO2 may influence the chemical processes taking place on these dust particles, which are very important for forming larger molecules in space", adds Holger Müller from the University of Cologne.

Absorption features of TiO have been known from spectra in the visible region for more than a hundred years. In fact, these features are used in part to classify some types of stars with low surface temperatures (M- and S-type stars). The pulsation of Mira stars, one specific class of variable stars, is thought to be caused by titanium oxide. Mira stars, supergiant variable stars in a late stage of their evolution, are named after their prototype star "Mira" (the wonderful) in the constellation of Cetus (the 'sea monster' or the 'whale').

The observations of TiO and TiO2 show that the two molecules are easily formed around VY CMa at a location that is more or less as predicted by theory. It seems, however, that some portion of those molecules avoid forming dust and are observable as gas phase species. Another possibility is that the dust is destroyed in the nebula and releases fresh TiO molecules back to the gas. The latter scenario is quite likely as parts of the wind in VY CMa seem to collide with each other.

The new detections at submillimeter wavelengths are particularly important because they allow studying the process of dust formation. Also, at optical wavelengths, the radiation emitted by the molecules is scattered by dust present in the extended nebula which blurs the picture, while this effect is negligible at radio wavelengths allowing for more precise measurements.

The discoveries of TiO and TiO2 in the spectrum of VY CMa have been made with the Submillimeter Array (SMA), a radio interferometer located at Hawaii, USA (Figure 2). Because the instrument combines eight antennas which worked together as one big telescope 226-meters in size, astronomers were able to make observations at unprecedented sensitivity and angular resolution. A confirmation of the new detections was successively made later with the IRAM Plateau de Bure Interferometer (PdBI) located in the French Alps.

The new Atacama Large Millimeter/submillimeter Array (ALMA) in Chile has just been officially opened. "ALMA will allow studies of titanium oxides and other molecules in VY CMa at even better resolution, which makes our discoveries very promising for the future", concludes Tomasz Kamiñski.

Contact:

Dr. Tomasz Kamiñski,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49(0)228-525-392
E-mail: kaminski@mpifr-bonn.mpg.de

Prof. Dr. Karl M. Menten,
Director and Head of Research Department "Millimeter and Submillimeter Astronomy",
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49(0)228-525-297
E-mail: kmenten@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach,
Max-Planck-Institut für Radioastronomie,
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Norbert Junkes | Max-Planck-Institut
Further information:
http://www.mpifr-bonn.mpg.de
http://www3.mpifr-bonn.mpg.de/public/pr/pr-tio-mar2013-en.html
http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201220290&Itemid=129

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>