Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SU professors test boundaries of 'new physics' with discovery of 4-quark hadron

11.04.2014

Physicist Tomasz Skwarnicki confirms existence of exotic hadron with 2 quarks, 2 anti-quarks

Physicists in Syracuse University's College of Arts and Sciences have helped confirm the existence of exotic hadrons—a type of matter that cannot be classified within the traditional quark model.

Their finding is the subject of a forthcoming article, prepared by the Large Hadron Collider beauty (LHCb) Collaboration at CERN in Geneva, Switzerland. (LHCb is a multinational experiment, designed to identify new forces and particles in the universe.) Tomasz Skwarnicki, professor of physics, is one of the paper's lead authors.

"We've confirmed the unambiguous observation of a very exotic state—something that looks like a particle composed of two quarks and two anti-quarks," says Skwarnicki, a specialist in experimental high-energy physics. "The discovery certainly doesn't fit the traditional quark model. It may give us a new way of looking at strong-interaction physics."

... more about:
»CERN »Collider »Hadron »LHCb »Syracuse »collisions »matter »physics »technique

Quarks are hard, point-like objects found within the nucleus of an atom. When quarks combine in threes, they form compound particles known as baryons. Protons are probably the best-known baryons.

Sometimes, quarks interact with corresponding anti-particles (i.e., anti-quarks), which have the same mass but opposite charges. When this happens, they form mesons. These compounds often turn up in the decay of heavy man-made particles, such as those in particle accelerators, nuclear reactors, and cosmic rays.

Mesons, baryons, and other kinds of particles that take part in strong interactions are called hadrons.

This classification remained virtually unchallenged until 2007, when an international team of 400 physicists and engineers known as the Belle Collaboration discovered an exotic particle called Z(4430), which appeared to have two quarks and two anti-quarks.

"Some experts argued that Belle's initial analysis was naïve and prone to arrive at an unjustified conclusion," says Skwarnicki, adding that other exotic states have since been observed. "As a result, many physicists concluded that there was no good evidence to prove this particle was real."

A few years later, another multinational team, known as BaBar, used a more sophisticated analysis technique, only to end up provoking more controversy over the existence of Z(4430). "BaBar didn't prove that Belle's measurements and data interpretations were wrong," Skwarnicki says. "They just felt that, based on their data, there was no need to postulate existence of this particle."

Belle responded with an even more rigorous analysis of the same data set. This time, they found statistically significant evidence for Z(4430), despite the complexity of the analysis and a large number of assumptions made about the particle's production environment.

LHCb, which, for much of the past year, has closely studied its own particle data, used Belle's and BaBar's analysis techniques. In the process, Skwarnicki and his team confirmed that Z(4430) was for real—and an exotic hadron, to boot.

"This experiment is the clincher, showing that particles made up of two quarks and two anti-quarks actually exist," Skwarnicki says. "There used to be less-clear evidence for the existence of such a particle, with one experiment being questioned by another. Now we know this is an observed structure, instead of some reflection or special feature of the data."

Professor Sheldon Stone leads a team of SU researchers at CERN (also known as the European Organization for Nuclear Research) in Geneva.

"We analyzed tens of thousands of meson decays, selected from trillions of collisions in the Large Hadron Collider [the world's largest, most powerful particle accelerator] at CERN," he says. "Because the data sample was so large, it forced us to use statistically powerful analysis that could, in turn, measure properties in an unambiguous manner. It's great to finally prove the existence of something that we had long thought was out there."

Adds Skwarnicki: "Each experiment--Belle, BaBar, and LHCb--analyzed its own data. Although it pertained to the same process, the data was collected at different times, with different colliders, and with different apparatuses for capturing outgoing particles. Our findings are unique to our experiment."

###

Housed in The College, the Department of Physics has been educating students and carrying out research for more than 125 years. Graduate and undergraduate opportunities are available in fields ranging from biological and condensed matter physics, to cosmology and particle physics, to gravitational wave detection and astrophysics.

Rob Enslin | Eurek Alert!
Further information:
http://www.syr.edu/

Further reports about: CERN Collider Hadron LHCb Syracuse collisions matter physics technique

More articles from Physics and Astronomy:

nachricht X-rays and electrons join forces to map catalytic reactions in real-time
30.06.2015 | DOE/Brookhaven National Laboratory

nachricht 3D Plasmonic Antenna Capable of Focusing Light into Few Nanometers
30.06.2015 | Korea Advanced Institute of Science and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

3D Plasmonic Antenna Capable of Focusing Light into Few Nanometers

30.06.2015 | Physics and Astronomy

X-rays and electrons join forces to map catalytic reactions in real-time

30.06.2015 | Physics and Astronomy

A polarizing view

30.06.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>