Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Gives Clues for Unleashing the Power of X-rays

17.06.2009
Three-dimensional, real-time X-ray images of patients could be closer to reality because of research recently completed by scientists at the University of Nebraska-Lincoln and a pair of Russian institutes.

In a paper to be published in an upcoming edition of Physical Review Letters, UNL Physics and Astronomy Professor Anthony Starace and his colleagues give scientists important clues into how to unleash coherent, high-powered X-rays.

“This could be a contributor to a number of innovations,” Starace said.

Starace's work focuses on a process called high-harmonic generation, or HHG. X-ray radiation can be created by focusing an optical laser into atoms of gaseous elements – usually low-electron types such as hydrogen, helium, or neon. HHG is the process that creates the energetic X-rays when the laser light interacts with those atoms’ electrons, causing the electrons to vibrate rapidly and emit X-rays.

But the problem with HHG has been around almost as long as the onset of the method in 1988: The X-ray light produced by the atoms is very weak. In an effort to make the X-rays more powerful, scientists have attempted using higher-powered lasers on the electrons, but success has been limited.

“Using longer wavelength lasers is another way to increase the energy output of the atoms,” Starace said. “The problem is, the intensity of the radiation (the atoms) produce drops very quickly.”

Instead of focusing on low-electron atoms like hydrogen and helium, Starace’s group applied HHG theory to heavier (and more rare) gaseous atoms having many electrons – elements such as xenon, argon and krypton. They discovered that the process would unleash high-energy X-rays with relatively high intensity by using longer wavelength lasers (with wavelengths within certain atom-specific ranges) that happen to drive collective electron oscillations of the many-electron atoms.

“If you use these rare gases and shine a laser in on them, they’ll emit X-Rays with an intensity that is much, much stronger (than with the simple atoms),” Starace said. “The atomic structure matters.”

Starace said that unlocking the high-powered X-rays could lead one day, for example, to more powerful and precise X-ray machines. For instance, he said, heart doctors might conduct an exam by scanning a patient and creating a 3D hologram of his or her heart, beating in real time.

Nanoscientists, who study the control of matter on an atomic or molecular scale, also may benefit from this finding, Starace said. Someday, the high-intensity X-rays may be used to make 3D images of the microscopic structures with which nanoscientists work.

“With nanotechnology, miniaturization is the order of the day,” he said. “But nanoscientists obviously could make use of a method to make the structures they’re building and working with more easily visible.”

The work is sponsored through funding by the National Science Foundation. Starace said NSF’s sponsorship made the collaboration with his Russian colleagues – Mikhail V. Frolov, N.L. Manakov and T.S. Sarantseva of Voronezh State University, and M.Y. Emelin and M.Y. Ryabikin of the Russian Academy of Sciences – possible.

Frolov worked with Starace at UNL from 2002-2004 when he was a postdoctoral research associate in the Department of Physics and Astronomy. He has returned to Lincoln a number of times to collaborate with Starace on the HHG research. Frolov is a Ph.D. student of Professor Nikolai Manakov, with whom Starace has had a decade-long research collaboration that was initiated with support from NSF. Manakov also is an Adjunct Professor in UNL's Department of Physics and Astronomy.

Steve Smith | Newswise Science News
Further information:
http://www.unl.edu

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>