Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Gives Clues for Unleashing the Power of X-rays

17.06.2009
Three-dimensional, real-time X-ray images of patients could be closer to reality because of research recently completed by scientists at the University of Nebraska-Lincoln and a pair of Russian institutes.

In a paper to be published in an upcoming edition of Physical Review Letters, UNL Physics and Astronomy Professor Anthony Starace and his colleagues give scientists important clues into how to unleash coherent, high-powered X-rays.

“This could be a contributor to a number of innovations,” Starace said.

Starace's work focuses on a process called high-harmonic generation, or HHG. X-ray radiation can be created by focusing an optical laser into atoms of gaseous elements – usually low-electron types such as hydrogen, helium, or neon. HHG is the process that creates the energetic X-rays when the laser light interacts with those atoms’ electrons, causing the electrons to vibrate rapidly and emit X-rays.

But the problem with HHG has been around almost as long as the onset of the method in 1988: The X-ray light produced by the atoms is very weak. In an effort to make the X-rays more powerful, scientists have attempted using higher-powered lasers on the electrons, but success has been limited.

“Using longer wavelength lasers is another way to increase the energy output of the atoms,” Starace said. “The problem is, the intensity of the radiation (the atoms) produce drops very quickly.”

Instead of focusing on low-electron atoms like hydrogen and helium, Starace’s group applied HHG theory to heavier (and more rare) gaseous atoms having many electrons – elements such as xenon, argon and krypton. They discovered that the process would unleash high-energy X-rays with relatively high intensity by using longer wavelength lasers (with wavelengths within certain atom-specific ranges) that happen to drive collective electron oscillations of the many-electron atoms.

“If you use these rare gases and shine a laser in on them, they’ll emit X-Rays with an intensity that is much, much stronger (than with the simple atoms),” Starace said. “The atomic structure matters.”

Starace said that unlocking the high-powered X-rays could lead one day, for example, to more powerful and precise X-ray machines. For instance, he said, heart doctors might conduct an exam by scanning a patient and creating a 3D hologram of his or her heart, beating in real time.

Nanoscientists, who study the control of matter on an atomic or molecular scale, also may benefit from this finding, Starace said. Someday, the high-intensity X-rays may be used to make 3D images of the microscopic structures with which nanoscientists work.

“With nanotechnology, miniaturization is the order of the day,” he said. “But nanoscientists obviously could make use of a method to make the structures they’re building and working with more easily visible.”

The work is sponsored through funding by the National Science Foundation. Starace said NSF’s sponsorship made the collaboration with his Russian colleagues – Mikhail V. Frolov, N.L. Manakov and T.S. Sarantseva of Voronezh State University, and M.Y. Emelin and M.Y. Ryabikin of the Russian Academy of Sciences – possible.

Frolov worked with Starace at UNL from 2002-2004 when he was a postdoctoral research associate in the Department of Physics and Astronomy. He has returned to Lincoln a number of times to collaborate with Starace on the HHG research. Frolov is a Ph.D. student of Professor Nikolai Manakov, with whom Starace has had a decade-long research collaboration that was initiated with support from NSF. Manakov also is an Adjunct Professor in UNL's Department of Physics and Astronomy.

Steve Smith | Newswise Science News
Further information:
http://www.unl.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>