Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Gives Clues for Unleashing the Power of X-rays

17.06.2009
Three-dimensional, real-time X-ray images of patients could be closer to reality because of research recently completed by scientists at the University of Nebraska-Lincoln and a pair of Russian institutes.

In a paper to be published in an upcoming edition of Physical Review Letters, UNL Physics and Astronomy Professor Anthony Starace and his colleagues give scientists important clues into how to unleash coherent, high-powered X-rays.

“This could be a contributor to a number of innovations,” Starace said.

Starace's work focuses on a process called high-harmonic generation, or HHG. X-ray radiation can be created by focusing an optical laser into atoms of gaseous elements – usually low-electron types such as hydrogen, helium, or neon. HHG is the process that creates the energetic X-rays when the laser light interacts with those atoms’ electrons, causing the electrons to vibrate rapidly and emit X-rays.

But the problem with HHG has been around almost as long as the onset of the method in 1988: The X-ray light produced by the atoms is very weak. In an effort to make the X-rays more powerful, scientists have attempted using higher-powered lasers on the electrons, but success has been limited.

“Using longer wavelength lasers is another way to increase the energy output of the atoms,” Starace said. “The problem is, the intensity of the radiation (the atoms) produce drops very quickly.”

Instead of focusing on low-electron atoms like hydrogen and helium, Starace’s group applied HHG theory to heavier (and more rare) gaseous atoms having many electrons – elements such as xenon, argon and krypton. They discovered that the process would unleash high-energy X-rays with relatively high intensity by using longer wavelength lasers (with wavelengths within certain atom-specific ranges) that happen to drive collective electron oscillations of the many-electron atoms.

“If you use these rare gases and shine a laser in on them, they’ll emit X-Rays with an intensity that is much, much stronger (than with the simple atoms),” Starace said. “The atomic structure matters.”

Starace said that unlocking the high-powered X-rays could lead one day, for example, to more powerful and precise X-ray machines. For instance, he said, heart doctors might conduct an exam by scanning a patient and creating a 3D hologram of his or her heart, beating in real time.

Nanoscientists, who study the control of matter on an atomic or molecular scale, also may benefit from this finding, Starace said. Someday, the high-intensity X-rays may be used to make 3D images of the microscopic structures with which nanoscientists work.

“With nanotechnology, miniaturization is the order of the day,” he said. “But nanoscientists obviously could make use of a method to make the structures they’re building and working with more easily visible.”

The work is sponsored through funding by the National Science Foundation. Starace said NSF’s sponsorship made the collaboration with his Russian colleagues – Mikhail V. Frolov, N.L. Manakov and T.S. Sarantseva of Voronezh State University, and M.Y. Emelin and M.Y. Ryabikin of the Russian Academy of Sciences – possible.

Frolov worked with Starace at UNL from 2002-2004 when he was a postdoctoral research associate in the Department of Physics and Astronomy. He has returned to Lincoln a number of times to collaborate with Starace on the HHG research. Frolov is a Ph.D. student of Professor Nikolai Manakov, with whom Starace has had a decade-long research collaboration that was initiated with support from NSF. Manakov also is an Adjunct Professor in UNL's Department of Physics and Astronomy.

Steve Smith | Newswise Science News
Further information:
http://www.unl.edu

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>