Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strain and spin may enable ultra-low-energy computing

16.08.2011
By combining two frontier technologies, spintronics and straintronics, a team of researchers from Virginia Commonwealth University has devised perhaps the world's most miserly integrated circuit.

Their proposed design runs on so little energy that batteries are not even necessary; it could run merely by tapping the ambient energy from the environment.

Rather than the traditional charge-based electronic switches that encode the basic 0s and 1s of computer lingo, spintronics harnesses the natural spin – either up or down – of electrons to store bits of data. Spin one way and you get a 0; switch the spin the other way – typically by applying a magnetic field or by a spin-polarized current pulse – and you get a 1. During switching, spintronics uses considerably less energy than charge-based electronics.

However, when ramped up to usable processing speeds, much of that energy savings is lost in the mechanism through which the energy from the outside world is transferred to the magnet. The solution, as proposed in the AIP's journal Applied Physics Letters, is to use a special class of composite structure called multiferroics.

These composite structures consist of a layer of piezoelectric material with intimate contact to a magnetostrictive nanomagnet (one that changes shape in response to strain). When a tiny voltage is applied across the structure, it generates strain in the piezoelectric layer, which is then transferred to the magnetostrictive layer. This strain rotates the direction of magnetism, achieving the flip.

With the proper choice of materials, the energy dissipated can be as low as 0.4 attojoules, or about a billionth of a billionth of a joule. This proposed design would create an extremely low-power, yet high-density, non-volatile magnetic logic and memory system. The processors would be well suited for implantable medical devices and could run on energy harvested from the patient's body motion. They also could be incorporated into buoy-mounted computers that would harvest energy from sea waves, among other intriguing possibilities.

Article: "Hybrid spintronics and straintronics: A magnetic technology for ultra-low-energy computing signal processing" is published in Applied Physics Letters.

Authors: Kuntal Roy (1), Supriyo Bandyopadhyay (1), and Jayasimha Atulasimha (2).

(1) Department of Electrical and Computer Engineering, Virginia Commonwealth University

(2) Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University

Charles E. Blue | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>