Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stony Brook University Geosciences Researchers Re-Establish the Structure of Magnesium Borohydride

17.12.2012
An international team led by Xiang-Feng Zhou and Artem R. Oganov, PhD, theoretical crystallographers in the Department of Geosciences and Department of Physics and Astronomy at Stony Brook University, have established the structure of one of the most important high-energy-density materials, magnesium borohydride or Mg(BH4)2. Their findings, “First-Principles Determination of the Structure of Magnesium Borohydride,” have been published in the December 13 edition of Physical Review Letters.
“Experimental crystal structure determination is often viewed as a routine task with a guaranteed correct result, but we successfully challenged the ‘experimental’ structure of ä-Mg(BH4)2 ,” said Zhou. “This material contains nearly 15 wt. % hydrogen, which makes this an important energy material,” added Oganov.

Structures of several modifications of Mg(BH4)2 were known from high-quality powder diffraction data, a rather standard method for determining crystal structures of materials. Researchers used Prof. Oganov’s breakthrough evolutionary method for crystal structure prediction, aiming to find the most stable structures of Mg(BH4)2 at different conditions.

To Zhou’s surprise, among the theoretically predicted structures he did not find the structure earlier proposed by experimentalists for the ä-phase. He then investigated the experimental structural model and found it to be very unfavorable compared to the theoretically predicted models. Even worse, the “experimental” structure was found to be unable to sustain its own lattice vibrations - predicted to fall apart as a result of atomic thermal motion. This indicates that the “experimental” structure is absolutely impossible – even as a metastable state.

Comparing the diffraction patterns of the theoretically predicted structure with experiments, Zhou realized that there is a perfect match. Subsequently, he found yet another structure that matches experimental data. Thus, there are at least three completely different crystal structures that match experimental diffraction data, but one of them – the one claimed by experimentalists – has been ruled out. The other two structures were shown to explain another mystery - the existence of two almost indistinguishable phases called ä and ä’ (previous experiments were unable to propose any solution for the latter). Zhou and colleagues determined the structures of these phases to have symmetries I41/acd and P-4.

“It is indeed surprising that experimental work, based on high quality data, failed to correctly solve these simple and highly symmetric crystal structures, containing only six non-hydrogen atoms,” said Zhou. “We were also surprised to see completely different structures having identical diffraction patterns. In such situations, which may be more common than we expect, theoretical structure searching will play a major role.”

“Crystal structure is the basis for understanding the behavior of materials,” said Oganov. “The possibility to predict crystal structures is a major breakthrough of our time and will prove crucial for the future discovery of new materials.”

| Newswise
Further information:
http://www.stonybrook.edu

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>