Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


STONE-6 artificial meteorite shows martian impactors could carry traces of life

An artificial meteorite designed by the European Space Agency has shown that traces of life in a martian meteorite could survive the violent heat and shock of entry into the Earth’s atmosphere. The experiment’s results also suggest that meteorite hunters should widen their search to include white rocks if we are to find traces of life in martian meteorites.

The STONE-6 experiment tested whether sedimentary rock samples could withstand the extreme conditions during a descent though the Earth’s atmosphere where temperatures reached at least 1700 degrees Celsius.

After landing, the samples were transported in protective holders to a laboratory clean-room at ESTEC and examined to see if any traces of life remained. The results will be presented by Dr Frances Westall at the European Planetary Science Congress on Thursday 25th September.

Recent missions have gathered compelling evidence for water and sediments on early Mars. Potential traces of Martian life are more likely to be found in sediments that have been formed in water. However, although about 39 known meteorites from Mars have been identified, all are basaltic rock-types and no sedimentary meteorites have been found to date.

Dr Westall said, “The STONE-6 experiment shows that sedimentary martian meteorites could reach Earth. The fact that we haven’t found any to date could mean that we need to change the way we hunt for meteorites. Most meteorites have been found in Antarctica, where their black fusion crust shows up clearly against the white snow. In this experiment we found that the sedimentary rocks developed a white crust or none at all. That means that we need to expand our search to white or light-coloured rocks.”

The STONE-6 experiment was mounted on a FOTON M3 capsule that was launched from Baikonur on 14th September 2007. Two samples of terrestrial sedimentary rock and a control sample of basalt were fixed to the heat-shield of the return capsule, which re-entered the atmosphere on 26th September after 12 days in orbit. The basalt was lost during re-entry. However, a sample of 3.5 billion year old volcanic sand containing carbonaceous microfossils and a 370 million year sample of mudstone from the Orkney Islands containing chemical biomarkers both survived.

On examination at ESTEC, the 3.5 billion year old sample of sand from Pilbara in Australia was found to have formed a half-millimetre thick fusion crust that was creamy white in colour. About half the rock had ablated but the microfossils and carbon survived at depth in the sample. Approximately 30 percent of the other sediment, a lacustrine sand from the Orkney Islands, also survived, as did some of the biomolecules. The heat of entry resulted in mineralogical changes in both rocks.

The rocks also transported living organisms, a type of bacteria called Chroococcidiopsis, on the back of the rocks, away from the exposed edge. Unfortunately the heat of reentry was so high, even with a protective two centimetre-thick rock coating, that the organisms were carbonised. They died but their cells still remain as “pompeified” forms.

Dr Westall said, “The STONE-6 experiment suggests that, if martian sedimentary meteorites carry traces of past life, these traces could be safely transported to Earth. However, the results are more problematic when applied to Panspermia, a theory that proposes living cells could be transported between planets. STONE-6 showed at least two centimetres of rock is not sufficient to protect the organisms during entry.”


In 1999, ESA created the first artificial meteorite experiment in space, STONE-1, which tested the effects of entry into the Earth’s atmosphere on samples of igneous and sedimentary rock as well as a simulated sample of martian regolith. Since then, further STONE experiments have tested the effects on different rock types and biological traces. During descent, the re-entry capsule reaches a velocity of 7.6 kilometres per second, slightly lower than normal meteorite velocities of 12-15 kilometres per second.

For further details, see:

EPSC 2008 is organised by Europlanet, the European Planetology Network in association with the European Geosciences Union and the Westfälische Wilhelms Universität, Münster.
For further details, see the meeting website:
EuroPlaNet co-ordinates activities in Planetary Sciences in order to achieve a long-term integration of this discipline in Europe.
The objectives are to:
1) increase the productivity of planetary projects with European investment, with emphasis on major planetary exploration missions;
2) initiate a long-term integration of the European planetary science community;
3) improve European scientific competitiveness, develop and spread expertise in this research area;

4) improve public understanding of planetary environments.

Europlanet Project website:
Europlanet Outreach website:
Information films on Europlanet can be found at:
Images can be found at:

Anita Heward | alfa
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>