Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

STONE-6 artificial meteorite shows martian impactors could carry traces of life

25.09.2008
An artificial meteorite designed by the European Space Agency has shown that traces of life in a martian meteorite could survive the violent heat and shock of entry into the Earth’s atmosphere. The experiment’s results also suggest that meteorite hunters should widen their search to include white rocks if we are to find traces of life in martian meteorites.

The STONE-6 experiment tested whether sedimentary rock samples could withstand the extreme conditions during a descent though the Earth’s atmosphere where temperatures reached at least 1700 degrees Celsius.

After landing, the samples were transported in protective holders to a laboratory clean-room at ESTEC and examined to see if any traces of life remained. The results will be presented by Dr Frances Westall at the European Planetary Science Congress on Thursday 25th September.

Recent missions have gathered compelling evidence for water and sediments on early Mars. Potential traces of Martian life are more likely to be found in sediments that have been formed in water. However, although about 39 known meteorites from Mars have been identified, all are basaltic rock-types and no sedimentary meteorites have been found to date.

Dr Westall said, “The STONE-6 experiment shows that sedimentary martian meteorites could reach Earth. The fact that we haven’t found any to date could mean that we need to change the way we hunt for meteorites. Most meteorites have been found in Antarctica, where their black fusion crust shows up clearly against the white snow. In this experiment we found that the sedimentary rocks developed a white crust or none at all. That means that we need to expand our search to white or light-coloured rocks.”

The STONE-6 experiment was mounted on a FOTON M3 capsule that was launched from Baikonur on 14th September 2007. Two samples of terrestrial sedimentary rock and a control sample of basalt were fixed to the heat-shield of the return capsule, which re-entered the atmosphere on 26th September after 12 days in orbit. The basalt was lost during re-entry. However, a sample of 3.5 billion year old volcanic sand containing carbonaceous microfossils and a 370 million year sample of mudstone from the Orkney Islands containing chemical biomarkers both survived.

On examination at ESTEC, the 3.5 billion year old sample of sand from Pilbara in Australia was found to have formed a half-millimetre thick fusion crust that was creamy white in colour. About half the rock had ablated but the microfossils and carbon survived at depth in the sample. Approximately 30 percent of the other sediment, a lacustrine sand from the Orkney Islands, also survived, as did some of the biomolecules. The heat of entry resulted in mineralogical changes in both rocks.

The rocks also transported living organisms, a type of bacteria called Chroococcidiopsis, on the back of the rocks, away from the exposed edge. Unfortunately the heat of reentry was so high, even with a protective two centimetre-thick rock coating, that the organisms were carbonised. They died but their cells still remain as “pompeified” forms.

Dr Westall said, “The STONE-6 experiment suggests that, if martian sedimentary meteorites carry traces of past life, these traces could be safely transported to Earth. However, the results are more problematic when applied to Panspermia, a theory that proposes living cells could be transported between planets. STONE-6 showed at least two centimetres of rock is not sufficient to protect the organisms during entry.”

FURTHER INFORMATION

STONE-6
In 1999, ESA created the first artificial meteorite experiment in space, STONE-1, which tested the effects of entry into the Earth’s atmosphere on samples of igneous and sedimentary rock as well as a simulated sample of martian regolith. Since then, further STONE experiments have tested the effects on different rock types and biological traces. During descent, the re-entry capsule reaches a velocity of 7.6 kilometres per second, slightly lower than normal meteorite velocities of 12-15 kilometres per second.

For further details, see: http://www.esa.int/esaCP/SEMN5ZMPQ5F_FeatureWeek_0.html

EUROPEAN PLANETARY SCIENCE CONGRESS
EPSC 2008 is organised by Europlanet, the European Planetology Network in association with the European Geosciences Union and the Westfälische Wilhelms Universität, Münster.
For further details, see the meeting website:
http://meetings.copernicus.org/epsc2008/
EUROPLANET
EuroPlaNet co-ordinates activities in Planetary Sciences in order to achieve a long-term integration of this discipline in Europe.
The objectives are to:
1) increase the productivity of planetary projects with European investment, with emphasis on major planetary exploration missions;
2) initiate a long-term integration of the European planetary science community;
3) improve European scientific competitiveness, develop and spread expertise in this research area;

4) improve public understanding of planetary environments.

Europlanet Project website: http://europlanet.cesr.fr/
Europlanet Outreach website: http://www.europlanet-eu.org
Information films on Europlanet can be found at:
http://www.youtube.com/watch?v=5Bn_lhDXWSA
http://www.youtube.com/watch?v=mcEtDuGOmAQ
IMAGES
Images can be found at:
http://www.europlanet-eu.org/demo/index.php?option=com_content&task=view&id=123&Itemid=41

Anita Heward | alfa
Further information:
http://www.europlanet-eu.org
http://www.europlanet-eu.org/demo/index.php?option=com_content&task=view&id=123&Itemid=41

More articles from Physics and Astronomy:

nachricht Subnano lead particles show peculiar decay behavior
25.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Getting electrons to move in a semiconductor
25.04.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>