Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Spirals eat dwarfs: Galactic tendrils shed light on evolution of spiral galaxies

Spiral galaxies grow by swallowing smaller dwarf galaxies. As they are digested, these dwarf galaxies are severely distorted, forming structures such as surreal tendrils and stellar streams that surround their captors. Now, for the first time, a new survey has detected such tell-tale structures in galaxies more distant than our immediate galactic neighbourhood. This opens up new ways of testing our current views of galaxy evolution.

It's a “galaxy-eats-galaxy” universe out there: According to current models of galaxy evolution, galaxies grow by ingesting other star systems. In particular, spiral galaxies such as our own Milky Way galaxy grow by swallowing smaller dwarf galaxies.

Stellar streams around the galaxy M 63: remnants of a satellite galaxy that M 63 has swallowed. The central part is an ordinary positive image; in the outer regions, the negative of the image is shown. In this way, the faint structures that are the target of this survey are more readily discerned. This galaxy\'s distance from Earth is around 30 million light-years. The new survey has, for the first time, shown the presence of such tell-tale traces of spiral galaxies swallowing smaller satellites for galaxies more distant than our own “Local group” of galaxies.
Image: D. Martínez-Delgado (MPIA)

Around the Milky Way galaxy and in the vicinity of our immediate cosmic neighborhood, known as the “Local Group” of galaxies, traces of spiral galaxies swallowing dwarf galaxies have been known since 1997. But the Local Group with its three spiral galaxies and numerous dwarfs is much too small a sample to see whether theoretical predictions of the frequency of such digestive processes match observations. Now, for the first time, a new survey has managed to detect the tell-tale tendrils of galactic digestion beyond the Local Group. An international group of researchers led by David Martínez-Delgado (Max Planck Institute for Astronomy and Instituto de Astrofísica de Canarias) has completed a pilot survey of spiral galaxies at distances of up to 50 million light-years from Earth, discovering the tell-tale signs of spirals eating dwarfs.

When a spiral galaxy is approached by a much smaller companion, such as a dwarf galaxy, the larger galaxy's uneven gravitational pull severely distorts the smaller star system. Over the course of a few billions of years, tendril-like structures develop that can be detected by sensitive observation. In one typical outcome, the smaller galaxy is transformed into an elongated “tidal stream” consisting of stars that, over the course of additional billions of years, will join the galaxy's regular stellar inventory through a process of complete assimilation. The study shows that major tidal streams with masses between 1 and 5 percent of the galaxy's total mass are quite common in spiral galaxies.

Detailed simulations depicting the evolution of galaxies predict both tidal streams and a number of other distinct features that indicate mergers, such as giant debris clouds or jet-like features emerging from galactic discs. Interestingly, all these various features are indeed seen in the new observations – impressive evidence that current models of galaxy evolution are indeed on the right track.

The ultra-deep images obtained by Delgado and his colleagues open the door to a new round of systematic galactic interaction studies. Next, with a more complete survey that is currently in progress, the researchers intend to subject the current models to more quantitative tests, checking whether current simulations make the correct predictions for the relative frequency of the different morphological features.

Remarkably, these cutting-edge results were obtained with the telescopes of ambitious amateur astronomers: For their observations, the researchers used telescopes with apertures between 10 and 50 cm, equipped with commercially available CCD cameras. The telescopes are robotic (that is, they can be controlled remotely), and are located at two private observatories in the US and one in Australia. The results attest to the power of systematic work that is possible even with smaller instruments: While larger telescopes have the undeniable edge in detecting very distant, but comparatively bright star systems such as active galaxies, this survey provides some of the deepest insight yet when it comes to detecting ordinary galaxies that are similar to our own cosmic home, the Milky Way.[1]


Dr. David Martínez-Delgado (Principal investigator of this study)
Max Planck Institute for Astronomy
Tel.: +49 6221 528-455
Dr. Markus Pössel (Public relations)
Max Planck Institute for Astronomy
Tel.: +49 6221 528-261
[1] As a measure of faintness of the observed galaxies, the limit of the current survey was at 29.5 magnitudes per square arcsecond.

Background information

The research described here will be published as a letter in the October issue of the Astrophysical Journal as D. Martínez-Delgado et al., “Stellar Tidal Streams in Spiral Galaxies of the Local Volume: A Pilot Survey with Modest Aperture Telescopes”. An electronic preprint is avalailable under

The observations were carried out with 50 cm telescopes at Black Bird Observatory (New Mexico, USA) and Ranco del Sol (California, USA), the 37 cm telescope at Moorook (South Australia) and the 16 cm telescope at New Mexico Skies (New Mexico, USA).

The research group consists of David Martínez-Delgado (Max Planck Institute for Astronomy, Heidelberg, Germany, and Instituto de Astrofísica de Canarias, Spain), R. Jay Gabany (Black Bird Observatory), Ken Crawford (Rancho del Sol Observatory), Stefano Zibbeti and Hans-Walter Rix (Max Planck Institute for Astronomy), Steven R. Majewski and David A. McDavid (University of Virginia), Jürgen Fliri (Instituto de Astrofísica de Canarias and Observatoire de Paris, Meudon), Julio A. Carballo-Bello and Ignacio Trujillo (Instituto de Astrofísica de Canarias), Daniella C. Bardalez-Gagliuffi (MIT and Instituto de Astrofísica de Canarias), Jorge Penarriubio (Cambridge University) and Mischa Schirmer (Argelander Institute for Astronomy, Bonn University).

Dr. Markus Pössel | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>