Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spirals eat dwarfs: Galactic tendrils shed light on evolution of spiral galaxies

07.09.2010
Spiral galaxies grow by swallowing smaller dwarf galaxies. As they are digested, these dwarf galaxies are severely distorted, forming structures such as surreal tendrils and stellar streams that surround their captors. Now, for the first time, a new survey has detected such tell-tale structures in galaxies more distant than our immediate galactic neighbourhood. This opens up new ways of testing our current views of galaxy evolution.

It's a “galaxy-eats-galaxy” universe out there: According to current models of galaxy evolution, galaxies grow by ingesting other star systems. In particular, spiral galaxies such as our own Milky Way galaxy grow by swallowing smaller dwarf galaxies.


Stellar streams around the galaxy M 63: remnants of a satellite galaxy that M 63 has swallowed. The central part is an ordinary positive image; in the outer regions, the negative of the image is shown. In this way, the faint structures that are the target of this survey are more readily discerned. This galaxy\'s distance from Earth is around 30 million light-years. The new survey has, for the first time, shown the presence of such tell-tale traces of spiral galaxies swallowing smaller satellites for galaxies more distant than our own “Local group” of galaxies.
Image: D. Martínez-Delgado (MPIA)

Around the Milky Way galaxy and in the vicinity of our immediate cosmic neighborhood, known as the “Local Group” of galaxies, traces of spiral galaxies swallowing dwarf galaxies have been known since 1997. But the Local Group with its three spiral galaxies and numerous dwarfs is much too small a sample to see whether theoretical predictions of the frequency of such digestive processes match observations. Now, for the first time, a new survey has managed to detect the tell-tale tendrils of galactic digestion beyond the Local Group. An international group of researchers led by David Martínez-Delgado (Max Planck Institute for Astronomy and Instituto de Astrofísica de Canarias) has completed a pilot survey of spiral galaxies at distances of up to 50 million light-years from Earth, discovering the tell-tale signs of spirals eating dwarfs.

When a spiral galaxy is approached by a much smaller companion, such as a dwarf galaxy, the larger galaxy's uneven gravitational pull severely distorts the smaller star system. Over the course of a few billions of years, tendril-like structures develop that can be detected by sensitive observation. In one typical outcome, the smaller galaxy is transformed into an elongated “tidal stream” consisting of stars that, over the course of additional billions of years, will join the galaxy's regular stellar inventory through a process of complete assimilation. The study shows that major tidal streams with masses between 1 and 5 percent of the galaxy's total mass are quite common in spiral galaxies.

Detailed simulations depicting the evolution of galaxies predict both tidal streams and a number of other distinct features that indicate mergers, such as giant debris clouds or jet-like features emerging from galactic discs. Interestingly, all these various features are indeed seen in the new observations – impressive evidence that current models of galaxy evolution are indeed on the right track.

The ultra-deep images obtained by Delgado and his colleagues open the door to a new round of systematic galactic interaction studies. Next, with a more complete survey that is currently in progress, the researchers intend to subject the current models to more quantitative tests, checking whether current simulations make the correct predictions for the relative frequency of the different morphological features.

Remarkably, these cutting-edge results were obtained with the telescopes of ambitious amateur astronomers: For their observations, the researchers used telescopes with apertures between 10 and 50 cm, equipped with commercially available CCD cameras. The telescopes are robotic (that is, they can be controlled remotely), and are located at two private observatories in the US and one in Australia. The results attest to the power of systematic work that is possible even with smaller instruments: While larger telescopes have the undeniable edge in detecting very distant, but comparatively bright star systems such as active galaxies, this survey provides some of the deepest insight yet when it comes to detecting ordinary galaxies that are similar to our own cosmic home, the Milky Way.[1]

Contact

Dr. David Martínez-Delgado (Principal investigator of this study)
Max Planck Institute for Astronomy
Tel.: +49 6221 528-455
E-Mail: delgado@mpia.de
Dr. Markus Pössel (Public relations)
Max Planck Institute for Astronomy
Tel.: +49 6221 528-261
E-Mail: pr@mpia.de
Endnote
[1] As a measure of faintness of the observed galaxies, the limit of the current survey was at 29.5 magnitudes per square arcsecond.

Background information

The research described here will be published as a letter in the October issue of the Astrophysical Journal as D. Martínez-Delgado et al., “Stellar Tidal Streams in Spiral Galaxies of the Local Volume: A Pilot Survey with Modest Aperture Telescopes”. An electronic preprint is avalailable under http://arxiv.org/abs/1003.4860

The observations were carried out with 50 cm telescopes at Black Bird Observatory (New Mexico, USA) and Ranco del Sol (California, USA), the 37 cm telescope at Moorook (South Australia) and the 16 cm telescope at New Mexico Skies (New Mexico, USA).

The research group consists of David Martínez-Delgado (Max Planck Institute for Astronomy, Heidelberg, Germany, and Instituto de Astrofísica de Canarias, Spain), R. Jay Gabany (Black Bird Observatory), Ken Crawford (Rancho del Sol Observatory), Stefano Zibbeti and Hans-Walter Rix (Max Planck Institute for Astronomy), Steven R. Majewski and David A. McDavid (University of Virginia), Jürgen Fliri (Instituto de Astrofísica de Canarias and Observatoire de Paris, Meudon), Julio A. Carballo-Bello and Ignacio Trujillo (Instituto de Astrofísica de Canarias), Daniella C. Bardalez-Gagliuffi (MIT and Instituto de Astrofísica de Canarias), Jorge Penarriubio (Cambridge University) and Mischa Schirmer (Argelander Institute for Astronomy, Bonn University).

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>