Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spin Currents in Topological Insulators

12.06.2012
Once again, Würzburg physicists provide new insights into spintronics: In ultra-thin topological insulators, they have identified spin-polarized currents, which were first theoretically predicted six years ago. They also present a method of application for the development of new computers.

Electrons have an intrinsic angular momentum, called spin. As a consequence, not only do they carry charge, but they also behave like tiny magnets, which can be aligned. In our everyday use of computers, however, so many electron magnets point randomly in all directions as to cancel out as a whole.


The edge currents of a topological insulator serve as a source of spin-polarized electrons. Graphics: Luis Maier


Electron microscopic image of the circuit: The semiconductor H is shown in red, the gate contacts in yellow. The picture shows a section of about three by three micrometers. Photo: Luis Maier

But if the spin were to be controlled, conventional computers might suddenly become a lot faster: In the field of so-called spintronics, the magnetic orientation of the electrons is used for information transfer, which generates much less heat than is produced by continually switching the current on and off as is required in conventional electronics.

Metal and insulator at the same time: Topological insulators

Topological insulators represent a very promising class of materials for the implementation of spintronic devices. They conduct electricity only on their surface, but not in their interior. In the thin layers of some of these materials, the edge current consists of exactly two channels in which the individual electrons flow. The flow direction in the two channels is opposite to each other as is the spin orientation. This behavior is called the quantum spin Hall effect due to its analogy to the quantum Hall effect. The QSH effect was discovered in 2007 by the research group of Professor Laurens Molenkamp at the University of Würzburg.

Physicists at the department of Laurens Molenkamp and the research group of Professor Ewelina Hankiewicz now demonstrate – together with researchers of Stanford University in California – how the spin polarization of the channels can be experimentally verified. They also present an electronic device that can generate and measure spin-polarized currents and thus possesses some basic qualities required for spintronics. The results are published in the prestigious journal "Nature Physics".

From theory to experiment: Successful with an H-shaped nanostructure

Until recently, the spin-polarization of the channels was just mathematically described; experimentally, it could only be indirectly inferred. "However, the quantum spin Hall effect requires an actual spin-polarized transport as a condition for its existence," says research group leader Hartmut Buhmann of Molenkamp's department.

Würzburg physicist Christoph Brüne managed to furnish the desired experimental proof with an ingenious experimental set-up. Critical to the success was an H-shaped nanostructure, consisting of mercury telluride and fitted with an additional gold electrode at each leg.

With this configuration, it is possible to induce a quantum spin Hall state in one leg of the H-structure by means of an applied gate voltage. The other leg causes an imbalance between the two spin currents at the connection point, the cross bar of the H. As a consequence, only electrons with magnetic alignment can be extracted and measured. This also works in the reverse direction so that you can inject a spin-polarized current and measure the induced voltage in the QSH material.

Editors of "Nature Physics" turn the spotlight on the research

The theory required for the clear identification of the measured values as spin-currents, including some sophisticated simulations, comes from the group of Ewelina Hankiewicz and her colleagues in the research group of Professor Shou-Cheng Zhang in Stanford: "It wasn't easy to calculate how the spin edge currents get into the metal of the second leg," Professor Hankiewicz says.

However, all the hard work paid off in the end. The editors of "Nature Physics" even dedicated a "News & Views" review article to the Würzburg research. "This is equivalent to a high distinction, classifying our results as particularly important," explains Laurens Molenkamp.

Next research steps: Development of the concept

So far, the configuration presented by the Würzburg physicists only works at extremely low temperatures of typically minus 271 degrees Celsius. To make it work at room temperature, the scientists still need to find suitable materials. In the future, the Würzburg researchers intend as a first step to develop the concept into a spin transistor, thus providing all the basic elements required for application in spintronics.

In addition, topological insulators have even more potential: They are a safe bet for further exotic discoveries, such as Majorana fermions, i.e. particles that are their own anti-particles. So it doesn't come as a surprise that the German Research Foundation (DFG) intends to establish a new priority program for "topological insulators" this year.

Publications on the topic

Christoph Brüne, Andreas Roth, Hartmut Buhmann, Ewelina M. Hankiewicz, Laurens W. Molenkamp, Joseph Maciejko, Xiao-Liang Qi & Shou-Cheng Zhang: Spin polarization of the quantum spin Hall edge states; Nature Physics 8, 486–491 (2012), doi:10.1038/nphys2322

Yi Zhou & Fu-Chun Zhang: Quantum spin Hall effect: Left up right down; Nature Physics 8, 448–449 (2012), doi: 10.1038/nphys2335

Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W. Molenkamp, Xiao-Liang Qi and Shou-Cheng Zhang: Quantum Spin Hall Insulator State in HgTe Quantum Wells; Science 318, 766-770 (2007), doi: 10.1126/science.1148047

Contact person

Prof. Dr. Laurens Molenkamp, Institute of Physics of the University of Würzburg, T (0931) 31-84925, molenkamp@physik.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>