Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Speed Limit on the Quantum Highway

Physicists at the Max Planck Institute of Quantum Optics have measured the propagation velocity of quantum signals in a many-body system.

A quantum computer based on quantum particles instead of classical bits, can in principle outperform any classical computer. However, it still remains an open question, how fast and how efficient quantum computers really may be able to work.

Propagation of quantum correlations in an optical lattice. Artist’s view (Graphic by woogie works animation studio).

a) In the initial state, each lattice site is filled by exactly one atom. The height of the barrier between the sites is then abruptly lowered, bringing the system out of equilibrium. b) After the barrier has been lowered, an entangled doublon-holon pair is formed. The correlated doublons and holons move across the system with opposite momenta. (Graphic: MPQ)

A critical limitation will be given by the velocity with which a quantum signal can spread within a processing unit. For the first time, a group of physicists from the Quantum Many-Body Systems division at the Max-Planck Institute of Quantum Optics (Garching near Munich) in close collaboration with theoretical physicists from the University of Geneva (Switzerland) has succeeded in observing such a process in a solid-state like system (Nature, DOI:10.1038/nature10748).

The physicists generated a perfectly ordered lattice of rubidium atoms and then induced a quantum excitation – an “entangled” pair of a doubly occupied lattice site next to a hole. With the aid of a microscope they observed how this signal moved from lattice site to lattice site. “This measurement gives insight into very elementary processes involved in the communication and processing of quantum information”, Professor Immanuel Bloch points out.

The communication and processing of information in a quantum computer is based on concepts that are inherently different from those used in classical computers. This is due to the fundamental differences between quantum particles and classical objects. Whereas the latter are, for example, either black or white, quantum particles can take on both colours at the same time. It is only at the process of measurement that the particles decide on one of the two possible properties. As a consequence of this peculiar behaviour, two quantum objects can form one entangled state in which their properties are strictly connected, i.e. quantum correlated. At present there is no general model for predicting how fast a quantum correlation can travel after it is generated.

Now physicists from the Quantum Many-Body Systems division have been able to directly observe such a process. They start the experiment by generating an extremely cold gas of rubidium atoms. The ensemble is then kept in a light field which divides it into several parallel one-dimensional tubes. Now the tubes are superimposed with yet another light field, a standing laser light wave. By the periodic sequence of dark and bright areas, the atoms are forced to form a lattice structure: exactly one atom is trapped in each bright spot, and is separated from the neighbouring atom by a dark area which acts as a barrier.

Changing the intensity of the laser light controls the height of this barrier. At the beginning of the experiments, it is set to a value that prevents the atoms from moving to a neighbouring site. Then, in a very short time, the height of the barrier is lowered such that the system gets out of equilibrium and local excitations arise: Under the new conditions one or the other atom is allowed to “tunnel” through the barrier and reach its neighbouring site. If this happens, entangled pairs are generated, each consisting of a doubly occupied site, a so-called doublon, and a hole, named holon. According to a model developed by theoretical physicists from the University of Geneva around Professor Corinna Kollath, both doublon and holon move through the system – in opposite directions – as if they were real particles (see figure). “Regarding one entangled pair, it is not defined whether the doublon sits on the right or on the left side of the holon. Both constellations are present at the same time”, Dr. Marc Cheneau, a scientist in the Quantum Many-Body Systems division, explains. “However, once I observe a doubly occupied or an empty site, I exactly know where to find its counterpart. This is the correlation we are talking about.”

Now the scientists observe how the correlations are carried through the system. Using a new microscopic technique, they can directly image the single atoms on their lattice sites. In simplified terms, they make a series of snapshots each showing the position of the doublons and the holons at that very moment. The propagation velocity of this correlation can be deduced from the distance the two partners have moved apart in a certain period of time. The experimental results are in very good agreement with the predictions of the model mentioned above.
“As long as quantum information is communicated with light quanta, we know, that this is done with the speed of light,” Dr. Cheneau points out. “If, however, quantum bits or quantum registers are based on solid-state structures, things are different. Here the quantum correlation has to be passed on directly from bit to bit. Once we know how fast this process can happen, we have the key to understand, what will limit the velocity of future quantum computers.”
[Olivia Meyer-Streng]

Original Publication:
Marc Cheneau, Peter Barmettler, Dario Poletti, Manuel Endres, Peter Schauß, Takeshi Fukuhara, Christian Gross, Immanuel Bloch, Corinna Kollath and Stefan Kuhr
Light-cone-like spreading of correlations in a quantum many-body system
Nature, DOI:10.1038/nature10748


Prof. Dr. Immanuel Bloch
Chair of Quantum Optics
LMU Munich, Schellingstr. 4
80799 München, Germany, and
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München
Phone: +49 89 / 32905 -138

Dr. Marc Cheneau
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München
Phone: +49 89 / 32905 -631
Prof. Dr. Stefan Kuhr
University of Strathclyde
Department of Physics
107 Rottenrow East
Glasgow G4 0NG, U.K.
Phone.: +44 141 / 548 -3364

Prof. Dr. Corinna Kollath
Department of Theoretical Physics
University of Geneva
24, Quai Ernest Ansermet
1211 Genève, Switzerland
Phone.: +41 22 / 37 96 241
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 89 / 32905 - 213

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>