Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Speed Limit on the Quantum Highway

Physicists at the Max Planck Institute of Quantum Optics have measured the propagation velocity of quantum signals in a many-body system.

A quantum computer based on quantum particles instead of classical bits, can in principle outperform any classical computer. However, it still remains an open question, how fast and how efficient quantum computers really may be able to work.

Propagation of quantum correlations in an optical lattice. Artist’s view (Graphic by woogie works animation studio).

a) In the initial state, each lattice site is filled by exactly one atom. The height of the barrier between the sites is then abruptly lowered, bringing the system out of equilibrium. b) After the barrier has been lowered, an entangled doublon-holon pair is formed. The correlated doublons and holons move across the system with opposite momenta. (Graphic: MPQ)

A critical limitation will be given by the velocity with which a quantum signal can spread within a processing unit. For the first time, a group of physicists from the Quantum Many-Body Systems division at the Max-Planck Institute of Quantum Optics (Garching near Munich) in close collaboration with theoretical physicists from the University of Geneva (Switzerland) has succeeded in observing such a process in a solid-state like system (Nature, DOI:10.1038/nature10748).

The physicists generated a perfectly ordered lattice of rubidium atoms and then induced a quantum excitation – an “entangled” pair of a doubly occupied lattice site next to a hole. With the aid of a microscope they observed how this signal moved from lattice site to lattice site. “This measurement gives insight into very elementary processes involved in the communication and processing of quantum information”, Professor Immanuel Bloch points out.

The communication and processing of information in a quantum computer is based on concepts that are inherently different from those used in classical computers. This is due to the fundamental differences between quantum particles and classical objects. Whereas the latter are, for example, either black or white, quantum particles can take on both colours at the same time. It is only at the process of measurement that the particles decide on one of the two possible properties. As a consequence of this peculiar behaviour, two quantum objects can form one entangled state in which their properties are strictly connected, i.e. quantum correlated. At present there is no general model for predicting how fast a quantum correlation can travel after it is generated.

Now physicists from the Quantum Many-Body Systems division have been able to directly observe such a process. They start the experiment by generating an extremely cold gas of rubidium atoms. The ensemble is then kept in a light field which divides it into several parallel one-dimensional tubes. Now the tubes are superimposed with yet another light field, a standing laser light wave. By the periodic sequence of dark and bright areas, the atoms are forced to form a lattice structure: exactly one atom is trapped in each bright spot, and is separated from the neighbouring atom by a dark area which acts as a barrier.

Changing the intensity of the laser light controls the height of this barrier. At the beginning of the experiments, it is set to a value that prevents the atoms from moving to a neighbouring site. Then, in a very short time, the height of the barrier is lowered such that the system gets out of equilibrium and local excitations arise: Under the new conditions one or the other atom is allowed to “tunnel” through the barrier and reach its neighbouring site. If this happens, entangled pairs are generated, each consisting of a doubly occupied site, a so-called doublon, and a hole, named holon. According to a model developed by theoretical physicists from the University of Geneva around Professor Corinna Kollath, both doublon and holon move through the system – in opposite directions – as if they were real particles (see figure). “Regarding one entangled pair, it is not defined whether the doublon sits on the right or on the left side of the holon. Both constellations are present at the same time”, Dr. Marc Cheneau, a scientist in the Quantum Many-Body Systems division, explains. “However, once I observe a doubly occupied or an empty site, I exactly know where to find its counterpart. This is the correlation we are talking about.”

Now the scientists observe how the correlations are carried through the system. Using a new microscopic technique, they can directly image the single atoms on their lattice sites. In simplified terms, they make a series of snapshots each showing the position of the doublons and the holons at that very moment. The propagation velocity of this correlation can be deduced from the distance the two partners have moved apart in a certain period of time. The experimental results are in very good agreement with the predictions of the model mentioned above.
“As long as quantum information is communicated with light quanta, we know, that this is done with the speed of light,” Dr. Cheneau points out. “If, however, quantum bits or quantum registers are based on solid-state structures, things are different. Here the quantum correlation has to be passed on directly from bit to bit. Once we know how fast this process can happen, we have the key to understand, what will limit the velocity of future quantum computers.”
[Olivia Meyer-Streng]

Original Publication:
Marc Cheneau, Peter Barmettler, Dario Poletti, Manuel Endres, Peter Schauß, Takeshi Fukuhara, Christian Gross, Immanuel Bloch, Corinna Kollath and Stefan Kuhr
Light-cone-like spreading of correlations in a quantum many-body system
Nature, DOI:10.1038/nature10748


Prof. Dr. Immanuel Bloch
Chair of Quantum Optics
LMU Munich, Schellingstr. 4
80799 München, Germany, and
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München
Phone: +49 89 / 32905 -138

Dr. Marc Cheneau
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München
Phone: +49 89 / 32905 -631
Prof. Dr. Stefan Kuhr
University of Strathclyde
Department of Physics
107 Rottenrow East
Glasgow G4 0NG, U.K.
Phone.: +44 141 / 548 -3364

Prof. Dr. Corinna Kollath
Department of Theoretical Physics
University of Geneva
24, Quai Ernest Ansermet
1211 Genève, Switzerland
Phone.: +41 22 / 37 96 241
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 89 / 32905 - 213

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>



Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

More VideoLinks >>>