Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New spaceship force field makes Mars trip possible

04.11.2008
According to the international space agencies, “Space Weather” is the single greatest obstacle to deep space travel. Radiation from the sun and cosmic rays pose a deadly threat to astronauts in space.

New research, out today, Tuesday, November 4, published in IOP Publishing’s Plasma Physics and Controlled Fusion, shows how knowledge gained from the pursuit of nuclear fusion research may reduce the threat to acceptable levels, making man’s first mission to Mars a much greater possibility.

The solar energetic particles, although just part of the ‘cosmic rays’ spectrum, are of greatest concern because they are the most likely to cause deadly radiation damage to the astronauts.

Large numbers of these energetic particles occur intermittently as “storms” with little warning and are already known to pose the greatest threat to man. Nature helps protect the Earth by having a giant “magnetic bubble” around the planet called the magnetosphere.

The Apollo astronauts of the 1960’s and 70’s who walked upon the Moon are the only humans to have travelled beyond the Earth’s natural “force field” – the Earth’s magnetosphere. With typical journeys on the Apollo missions lasting only about 8 days, it was possible to miss an encounter with such a storm; a journey to Mars, however, would take about eighteen months, during which time it is almost certain that astronauts would be enveloped by such a “solar storm”.

Space craft visiting the Moon or Mars could maintain some of this protection by taking along their very own portable “mini”-magnetosphere. The idea has been around since the 1960’s but it was thought impractical because it was believed that only a very large (more than 100km wide) magnetic bubble could possibly work.

Researchers at the Science and Technology Facilities Council’s Rutherford Appleton Laboratory, the Universities of York, Strathclyde and IST Lisbon, have undertaken experiments, using know-how from 50 years of research into nuclear fusion, to show that it is possible for astronauts to shield their spacecrafts with a portable magnetosphere - scattering the highly charged, ionised particles of the solar wind and flares away from their space craft.

Computer simulations done by a team in Lisbon with scientists at Rutherford Appleton last year showed that theoretically a very much smaller “magnetic bubble” of only several hundred meters across would be enough to protect a spacecraft.

Now this has been confirmed in the laboratory in the UK using apparatus originally built to work on fusion. By recreating in miniature a tiny piece of the Solar Wind, scientists working in the laboratory were able to confirm that a small “hole” in the Solar Wind is all that would be needed to keep the astronauts safe on their journey to our nearest neighbours.

Dr. Ruth Bamford, one of the lead researchers at the Rutherford Appleton Laboratory, said, “These initial experiments have shown promise and that it may be possible to shield astronauts from deadly space weather”.

Joe Winters | alfa
Further information:
http://www.iop.org/EJ/abstract/0741-3335/50/12/124025

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>