Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Instrument Adds Big Piece to the Solar Corona Puzzle

24.01.2013
The Sun's visible surface, or photosphere, is 10,000 degrees Fahrenheit. As you move outward from it, you pass through a tenuous layer of hot, ionized gas or plasma called the corona. The corona is familiar to anyone who has seen a total solar eclipse, since it glimmers ghostly white around the hidden Sun.
But how can the solar atmosphere get hotter, rather than colder, the farther you go from the Sun's surface? This mystery has puzzled solar astronomers for decades. A suborbital rocket mission that launched in July 2012 has just provided a major piece of the puzzle.

The High-resolution Coronal Imager, or Hi-C, revealed one of the mechanisms that pumps energy into the corona, heating it to temperatures up to 7 million degrees F. The secret is a complex process known as magnetic reconnection.

"This is the first time we've had images at high enough resolution to directly observe magnetic reconnection," explained Smithsonian astronomer Leon Golub (Harvard-Smithsonian Center for Astrophysics). "We can see details in the corona five times finer than any other instrument."

"Our team developed an exceptional instrument capable of revolutionary image resolution of the solar atmosphere. Due to the level of activity, we were able to clearly focus on an active sunspot, thereby obtaining some remarkable images," said heliophysicist Jonathan Cirtain (Marshall Space Flight Center).

Magnetic braids and loops
The Sun's activity, including solar flares and plasma eruptions, is powered by magnetic fields. Most people are familiar with the simple bar magnet, and how you can sprinkle iron filings around one to see its field looping from one end to the other. The Sun is much more complicated.

The Sun's surface is like a collection of thousand-mile-long magnets scattered around after bubbling up from inside the Sun. Magnetic fields poke out of one spot and loop around to another spot. Plasma flows along those fields, outlining them with glowing threads.

The images from Hi-C showed interweaved magnetic fields that were braided just like hair. When those braids relax and straighten, they release energy. Hi-C witnessed one such event during its flight.

It also detected an area where magnetic field lines crossed in an X, then straightened out as the fields reconnected. Minutes later, that spot erupted with a mini solar flare.

Hi-C showed that the Sun is dynamic, with magnetic fields constantly warping, twisting, and colliding in bursts of energy. Added together, those energy bursts can boost the temperature of the corona to 7 million degrees F when the Sun is particularly active.

Selecting the target
The telescope aboard Hi-C provided a resolution of 0.2 arcseconds - about the size of a dime seen from 10 miles away. That allowed astronomers to tease out details just 100 miles in size. (For comparison, the Sun is 865,000 miles in diameter.)

Hi-C photographed the Sun in ultraviolet light at a wavelength of 19.3 nanometers - 25 times shorter than wavelengths of visible light. That wavelength is blocked by Earth's atmosphere, so to observe it astronomers had to get above the atmosphere. The rocket's suborbital flight allowed Hi-C to collect data for just over 5 minutes before returning to Earth.

Hi-C could only view a portion of the Sun, so the team had to point it carefully. And since the Sun changes hourly, they had to select their target at the last minute - the day of the launch. They chose a region that promised to be particularly active.

"We looked at one of the largest and most complicated active regions I've ever seen on the Sun," said Golub. "We hoped that we would see something really new, and we weren't disappointed."

Next steps
Golub said that data from Hi-C continues to be analyzed for more insights. Researchers are hunting areas where other energy release processes were occurring.

In the future, the scientists hope to launch a satellite that could observe the Sun continuously at the same level of sharp detail.

"We learned so much in just five minutes. Imagine what we could learn by watching the Sun 24/7 with this telescope," said Golub.

This research is being published in the journal Nature in a paper co-authored by Cirtain, Golub, A. Winebarger (Marshall), B. De Pontieu (Lockheed Martin), K. Kobayashi (University of Alabama - Huntsville), R. Moore (Marshall), R. Walsh (University of Central Lancashire), K. Korreck, M. Weber and P. McCauley (CfA), A. Title (Lockheed Martin), S. Kuzin (Lebedev Physical Institute), and C. DeForest (Southwest Research Institute).

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu
http://www.cfa.harvard.edu/news/2013/pr201303.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>