Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

South Pole Telescope Homes in on Dark Energy, Neutrinos

03.04.2012
Analysis of data from the 10-meter South Pole Telescope is providing new support for the most widely accepted explanation of dark energy — the source of the mysterious force that is responsible for the accelerating expansion of the universe.

The results also are beginning to hone in on the masses of neutrinos, the most abundant particles in the universe, which until recently were thought to be without mass.


Daniel Luong-Van

New data from the South Pole Telescope is bolstering Albert Einstein’s cosmological constant, an idea he considered to be his greatest blunder, to explain the modern mystery of dark energy. The SPT collaboration’s latest analyses have been submitted to the Astrophysical Journal and was presented April 1 at the American Physical Society meeting in Atlanta.

The data strongly support the leading model for dark energy, Albert Einstein’s cosmological constant — a slight modification to his theory of general relativity — even though the analysis was based on only a fraction of the SPT data collected and only 100 of the more than 500 galaxy clusters detected so far.

“With the full SPT data set, we will be able to place extremely tight constraints on dark energy and possibly determine the mass of the neutrinos,” said Bradford Benson, a postdoctoral scientist at the University of Chicago’s Kavli Institute for Cosmological Physics. Benson presented the SPT collaboration’s latest findings on April 1 at the American Physical Society meeting in Atlanta.

A series of papers detailing the SPT findings have been submitted to the Astrophysical Journal (see ApJ, 2011, 743, 28 led by Ryan Keisler, http://arxiv.org/abs/1112.5435 led by Benson, and http://arxiv.org/abs/1203.5775 led by Christian Reichardt).

The results are based on a new method that combines measurements taken by the SPT and X-ray satellites, and extends these measurements to larger distances than previously achieved using galaxy clusters.

The most widely accepted property of dark energy is that it leads to a pervasive force acting everywhere and at all times in the universe. This force could be the manifestation of Einstein's cosmological constant, which effectively assigns energy to empty space, even when it is free of matter and radiation. Einstein introduced the cosmological constant into his theory of general relativity to accommodate a stationary universe, the dominant idea of his day. He later considered it to be his greatest blunder after the discovery of an expanding universe.

In the late 1990s, astronomers discovered that the expansion of the universe appeared to be accelerating, according to cosmic distance measurements based on the brightness of exploding stars. Gravity should have been slowing the expansion, but instead it was speeding up.

Einstein’s cosmological constant is one explanation of the observed acceleration of the expanding universe, now supported by countless astronomical observations. Others hypothesize that gravity could operate differently on the largest scales of the universe. In either case, the astronomical measurements are pointing to new physics that have yet to be understood.

Clues to dark energy lurking in ‘shadows’

The SPT was specifically designed to tackle the dark energy mystery. The 10-meter telescope operates at millimeter wavelengths to make high-resolution images of the cosmic microwave background radiation (CMB), the light left over from the big bang. Scientists use the CMB in their search for distant, massive galaxy clusters, which can be used to pinpoint the mass of the neutrino and the properties of dark energy.

“The CMB is literally an image of the universe when it was only 400,000 years old, from a time before the first planets, stars and galaxies formed in the universe,” Benson said. “The CMB has travelled across the entire observable universe, for almost 14 billion years, and during its journey is imprinted with information regarding both the content and evolution of the universe.”

As the CMB passes through galaxy clusters, the clusters effectively leave “shadows” that allow astronomers to identify the most massive clusters in the universe, nearly independent of their distance.

“Clusters of galaxies are the most massive, rare objects in the universe, and therefore they can be effective probes to study physics on the largest scales of the universe,” said John Carlstrom, the S. Chandrasekhar Distinguished Service Professor in Astronomy & Astrophysics, who heads the SPT collaboration.

“The unsurpassed sensitivity and resolution of the CMB maps produced with the South Pole Telescope provides the most detailed view of the young universe and allows us to find all the massive clusters in the distant universe,” said Christian Reichardt, a postdoctoral researcher at the University of California, Berkeley, and lead author of the new SPT cluster catalog paper.

The number of clusters that formed over the history of the universe is sensitive to the mass of neutrinos and the influence of dark energy on the growth of cosmic structures.

“Neutrinos are amongst the most abundant particles in the universe,” Benson said. “About one trillion neutrinos pass through us each second, though you would hardly notice them because they rarely interact with ‘normal’ matter.”

The existence of neutrinos was proposed in 1930. They were first detected 25 years later, but their exact mass remains unknown. If they are too massive they would significantly affect the formation of galaxies and galaxy clusters, Benson said.

The SPT team has now placed tight limits on the neutrino masses, yielding a value that approaches predictions stemming from particle physics measurements.

“It is astounding how SPT measurements of the largest structures in the universe lead to new insights on the evasive neutrinos," said Lloyd Knox, professor of physics at the University of California at Davis and member of the SPT collaboration. Knox also will highlight the neutrino results in his presentation on Neutrinos in Cosmology at a special session of the APS on April 3.

The South Pole Telescope collaboration is led by the University of Chicago and includes research groups at Argonne National Laboratory, Cardiff University, Case Western Reserve University, Harvard University, Ludwig-Maximilians-Universität, Smithsonian Astrophysical Observatory, McGill University, University of California at Berkeley, University of California at Davis, University of Colorado at Boulder, University of Michigan, as well as individual scientists at several other institutions.

Members of the Kavli Institute for Cosmological Physics participating in the South Pole Telescope collaboration include faculty members John Carlstrom, who leads the effort; Mike Gladders, Wayne Hu, Andrey Kravtsov and Steve Meyer; senior researchers Clarence Chang, Tom Crawford, Erik Leitch and Kathryn Schaffer; postdoctoral scientists Bradford Benson, F. William High, Steven Hoover, Ryan Keisler, Jared Mehl and Tom Plagge; and graduate students Lindsey Bleem, Abby Crites, Monica Mocanu, Tyler Natoli and Kyle Story.

The SPT is funded primarily by the National Science Foundation’s Office of Polar Programs. Partial support also is provided by the NSF-funded Physics Frontier Center of the KICP, the Kavli Foundation, and the Gordon and Betty Moore Foundation.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>