Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soundproofing with quantum physics

06.07.2015

Doughnuts, electric current and quantum physics - this will sound like a weird list of words to most people, but for Sebastian Huber it is a job description.

ETH-professor Huber is a theoretical physicist who, for several years now, has focused his attention on so-called topological insulators, i.e., materials whose ability to conduct electric current originates in their topology.


A doughnut can be turned into a coffee cup by pulling, stretching and molding. Topologically speaking, therefore, doughnuts and coffee cups are identical.

Credit: Sebastian Huber / ETH Zurich

The easiest way to understand what "topological" means in this context is to imagine how a doughnut can be turned into a coffee cup by pulling, stretching and moulding - but without cutting it. Topologically speaking, therefore, doughnuts and coffee cups are identical, and by applying the same principle to the quantum mechanical wave function of electrons in a solid one obtains the phenomenon of the topological insulator.

This is advanced quantum physics, highly complex and far removed from everyday experience. Nevertheless, professor Huber and his collaborators have now managed to make these abstract ideas very concrete and even to come up with a possible application in engineering by cutting red tape, as it were, and involving colleagues from different disciplines all the way through the ETH.

From quanta to mechanics

In the beginning, Sebastian Huber asked a simple question: is it possible to apply the principle of a topological insulator to mechanical systems? Normally, quantum physics and mechanics are two separate worlds.

In the quantum world particles can "tunnel" through barriers and reinforce or cancel each other as waves, whereas everyday mechanics deals with falling bodies or the structural analysis of bridges. Huber and his colleagues realized, however, that the mathematical formulas describing the quantum properties of a topological insulator can be rearranged to look exactly like those of a well-known mechanical system - an array of swinging pendulums.

In particular, just like their quantum mechanical counterparts the mechanical formulas predicted so-called edge states. In such states an electric current (or, in the case of pendulums, a mechanical vibration) flows along the edges of the material, while inside the system nothing happens. "From a theoretical point of view that was a beautiful result", says Huber, "but, of course, it is easier to convince people if you also show it in practice."

No sooner said than done, together with technicians at the ETH Huber and his student built a mechanical model consisting of 270 pendulums that are arranged in a rectangular lattice and connected by small springs. Two of those pendulums can be mechanically excited, meaning that they can be shaken back and forth with a particular frequency and strength.

Little by little, the spring couplings cause the other pendulums to start swinging as well. Eventually, for a particular excitation frequency the physicists saw what they had been hoping for: the pendulums inside the rectangle stood still, whereas those along the edge vibrated rhythmically, causing a "wave" to flow around the rectangle. In other words, the coupled pendulums did, indeed, behave just like a topological insulator.

Robotic arms and lenses for sound

What started out as a pipe dream and a nice gimmick for professor Huber could soon become a useful tool. The mechanical edge states of the coupled pendulums, it turns out, are so robust - "topologically protected", in technical language - that they persist if the array of pendulums is disordered and even if a part of the rectangle is removed.

Such properties would be interesting, for instance, in sound and vibration insulation, which is important in various areas such as industrial production, where robot arms have to place objects precisely and without jittering. Moreover, one can imagine materials that convey sound in one direction only, or others that focus sound like a lens.

"Such applications are very challenging, but still realistic", says Chiara Daraio, ETH-professor for mechanics and materials. Of course, the mechanical systems would first have to shrink considerably - Huber's pendulums are, after all, half a metre long and weigh half a kilo. The engineers are already building a new device that works without pendulums and that will only be a few centimetres in size.

###

Literature reference

Süsstrunk R, Huber SD: Observation of phononic helical edge states in a mechanical topological insulator. Science 2015, 349: 47-50, doi: 10.1126/science.aab0239

Media Contact

Dr. Sebastian Huber
sehuber@ethz.ch

 @ETH_en

http://www.ethz.ch/index_EN 

Dr. Sebastian Huber | EurekAlert!

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>