Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar Storm Protection

16.07.2012
Massive explosions on the sun unleash radiation that could kill astronauts in space.

Now, researchers from the U.S. and South Korea have developed a warning system capable of forecasting the radiation from these violent solar storms nearly three hours (166 minutes) in advance, giving astronauts, as well as air crews flying over Earth’s polar regions, time to take protective action.

Physicists from the University of Delaware and from Chungnam National University and Hanyang University developed the system and report on it in Space Weather: The International Journal of Research and Applications, published by the American Geophysical Union. The research article also is selected as an “Editor’s Highlight.”

Prof. John Bieber at UD’s Bartol Research Institute, based in the Department of Physics and Astronomy, directed the scientific project. The article’s lead author is Su Yeon Oh, a postdoctoral researcher from Chungnam National University, who worked with Bieber on the project at UD.

“Traveling nearly at the speed of light, it takes just 10 minutes for the first particles ejected from a solar storm to reach Earth,” Bieber says. These sun storms can cover thousands of miles on the sun, like a wave of exploding hydrogen bombs.

The researchers used data collected by two neutron monitors installed years ago at the South Pole by UD — one inside and one outside the Amundsen-Scott South Pole Station — to determine the intensity of the high-energy, fast-moving particles that arrive to Earth first from solar storms. These particles can carry energies over 500 megaelectron volts (MeV) — that’s over 500 million electron volts.

By examining the properties of these first-arriving particles, the scientists can make useful predictions about the slower-moving, yet more dangerous particles to follow.

“These slower-moving particles are more dangerous because there are so many more of them. That’s where the danger lies,” Bieber explains.

When these firstcomer, positively charged particles, or protons, hit an air molecule in Earth’s atmosphere, they blast apart into tiny pieces, which, in turn, slam into other air molecules, and so on. Neutrons, neutrally charged particles, are produced as part of this cascading event.

From measurements of the neutrons produced in past solar events taken by UD’s neutron monitors at South Pole, the scientists calculated the energy of the first-arriving protons and, from that, estimated the intensity of the later-arriving, more dangerous particles.

The authors compared their predictions for 12 solar events against observations made by geosynchronous satellites, achieving good agreement for protons with energies higher than 40 to 80 megaelectron (million) volts.

Depending on the protons’ energy, the system provides a warning time up to 166 minutes. That would give astronauts on deep space flights time to seek out an armored area in their spacecraft, Bieber says, and pilots flying in Earth’s polar regions, where the planet’s protective magnetic field is weaker, time to reduce their altitude.

How great is the risk?

The sun is now moving into a peak period of solar storm activity, which generally occurs every 11 years. The solar storms, flares and coronal mass ejections threaten the electrical system on Earth in addition to some astronauts and fliers.

“If you’re in a plane flying over the poles, there is an increased radiation exposure comparable to having an extra chest X-ray you weren’t planning on,” says Bieber. “However, if you’re an astronaut on the way to the moon or Mars, it’s a big problem. It could kill you.”

Most astronauts have flown in low Earth orbit in recent years, but if we go back to the moon or decide to send humans to Mars, we need to think about these things, Bieber says. According to him, some of the Apollo astronauts were just lucky.

“Somehow they got these moon launches between big solar flares that would have killed them right then and there,” Bieber notes.

The study’s authors also included John Clem, Paul Evenson and R. Pyle from UD; Yu Yi from Chungnam University; and Y.-K. Kim, Hanyang University.

The research was funded by the National Research Foundation of Korea through the South Korean government and by the U.S. National Science Foundation, NASA and the NASA/EPSCoR program.

Original story with images on UDaily at http://www.udel.edu/udaily/2013/jul/solar-storms-071212.html

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>