Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar Storm Protection

16.07.2012
Massive explosions on the sun unleash radiation that could kill astronauts in space.

Now, researchers from the U.S. and South Korea have developed a warning system capable of forecasting the radiation from these violent solar storms nearly three hours (166 minutes) in advance, giving astronauts, as well as air crews flying over Earth’s polar regions, time to take protective action.

Physicists from the University of Delaware and from Chungnam National University and Hanyang University developed the system and report on it in Space Weather: The International Journal of Research and Applications, published by the American Geophysical Union. The research article also is selected as an “Editor’s Highlight.”

Prof. John Bieber at UD’s Bartol Research Institute, based in the Department of Physics and Astronomy, directed the scientific project. The article’s lead author is Su Yeon Oh, a postdoctoral researcher from Chungnam National University, who worked with Bieber on the project at UD.

“Traveling nearly at the speed of light, it takes just 10 minutes for the first particles ejected from a solar storm to reach Earth,” Bieber says. These sun storms can cover thousands of miles on the sun, like a wave of exploding hydrogen bombs.

The researchers used data collected by two neutron monitors installed years ago at the South Pole by UD — one inside and one outside the Amundsen-Scott South Pole Station — to determine the intensity of the high-energy, fast-moving particles that arrive to Earth first from solar storms. These particles can carry energies over 500 megaelectron volts (MeV) — that’s over 500 million electron volts.

By examining the properties of these first-arriving particles, the scientists can make useful predictions about the slower-moving, yet more dangerous particles to follow.

“These slower-moving particles are more dangerous because there are so many more of them. That’s where the danger lies,” Bieber explains.

When these firstcomer, positively charged particles, or protons, hit an air molecule in Earth’s atmosphere, they blast apart into tiny pieces, which, in turn, slam into other air molecules, and so on. Neutrons, neutrally charged particles, are produced as part of this cascading event.

From measurements of the neutrons produced in past solar events taken by UD’s neutron monitors at South Pole, the scientists calculated the energy of the first-arriving protons and, from that, estimated the intensity of the later-arriving, more dangerous particles.

The authors compared their predictions for 12 solar events against observations made by geosynchronous satellites, achieving good agreement for protons with energies higher than 40 to 80 megaelectron (million) volts.

Depending on the protons’ energy, the system provides a warning time up to 166 minutes. That would give astronauts on deep space flights time to seek out an armored area in their spacecraft, Bieber says, and pilots flying in Earth’s polar regions, where the planet’s protective magnetic field is weaker, time to reduce their altitude.

How great is the risk?

The sun is now moving into a peak period of solar storm activity, which generally occurs every 11 years. The solar storms, flares and coronal mass ejections threaten the electrical system on Earth in addition to some astronauts and fliers.

“If you’re in a plane flying over the poles, there is an increased radiation exposure comparable to having an extra chest X-ray you weren’t planning on,” says Bieber. “However, if you’re an astronaut on the way to the moon or Mars, it’s a big problem. It could kill you.”

Most astronauts have flown in low Earth orbit in recent years, but if we go back to the moon or decide to send humans to Mars, we need to think about these things, Bieber says. According to him, some of the Apollo astronauts were just lucky.

“Somehow they got these moon launches between big solar flares that would have killed them right then and there,” Bieber notes.

The study’s authors also included John Clem, Paul Evenson and R. Pyle from UD; Yu Yi from Chungnam University; and Y.-K. Kim, Hanyang University.

The research was funded by the National Research Foundation of Korea through the South Korean government and by the U.S. National Science Foundation, NASA and the NASA/EPSCoR program.

Original story with images on UDaily at http://www.udel.edu/udaily/2013/jul/solar-storms-071212.html

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>