Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Lighting: New LED Drops the “Droop”

15.01.2009
Researchers at Rensselaer Polytechnic Institute have developed and demonstrated a new type of light emitting diode (LED) with significantly improved lighting performance and energy efficiency.

The new polarization-matched LED, developed in collaboration with Samsung Electro-Mechanics, exhibits an 18 percent increase in light output and a 22 percent increase in wall-plug efficiency, which essentially measures the amount of electricity the LED converts into light.

The new device achieves a notable reduction in “efficiency droop,” a well-known phenomenon that provokes LEDs to be most efficient when receiving low-density currents of electricity, but then to lose efficiency as higher density currents of electricity are fed into the device. The cause of this droop is not yet fully understood, but studies have shown that electron leakage is likely a large part of the problem.

“This droop is under the spotlight since today’s high-brightness LEDs are operated at current densities far beyond where efficiency peaks,” said project leader E. Fred Schubert, Wellfleet Senior Constellation Professor of Future Chips at Rensselaer, and head of the university’s National Science Foundation-funded Smart Lighting Engineering Research Center.

“This challenge has been a stumbling block, because reducing the current densities to values where LEDs are more efficient is unacceptable. Our new LED, however, which has a radically re-designed active region, namely a polarization-matched active region, tackles this issue and brings LEDs closer to being able to operate efficiently at high current densities,” Schubert said.

Results of the study are explained in a paper published online this week by Applied Physics Letters.

Focusing on the active region of LEDs where the light is generated, Schubert’s team discovered the region contained materials with mismatched polarization. The polarization mismatch likely causes electron leakage, and therefore a loss of efficiency, Schubert said.

The researchers discovered that the polarization mismatch can be strongly reduced by introducing a new quantum-barrier design. They replaced the conventional Gallium Indium Nitride/Gallium Nitride (GaInN/GaN) layer of the LED active region, and replaced it with Gallium Indium Nitride/ Gallium Indium Nitride (GaInN/GaInN). This substitution allows the layers of the active region to have a better matched polarization, and in turn reduce both electron leakage and efficiency droop.

The benefits seen by testing the new GaInN/GaInN LED were consistent with theoretical simulations showing polarization matching reducing electron leakage and efficiency droop.

Schubert expects that a new wave of lighting devices based on LEDs and solid-state lighting will supplant the common light bulb in coming years, leading to vast environmental, energy, and cost benefits as well as innovations in healthcare, transportation systems, digital displays, and computer networking.

Along with Schubert, co-authors on the paper include Rensselaer physics, Future Chips, and electrical engineering graduate students Jiuru Xu, Martin F. Schubert, and Ahmed N. Noemaun; Rensselaer Future Chips research assistant Di Zhu; Jong Kyu Kim, research assistant professor of electrical, computer, and systems engineering at Rensselaer; along with Samsung Electro-Mechanics researchers Min Ho Kim, Hun Jae Chung, Sukho Yoon, Cheolsoo Sone, and Yongjo Park.

Funding for the project was contributed by Samsung Electro-Mechanics, the U.S. National Science Foundation, the Rensselaer Smart Lighting Engineering Research Center, Sandia National Laboratories, Rochester Institute of Technology, U.S. Department of Energy, U.S. Department of Defense, Magnolia Optics, Crystal IS, Troy Research Corporation, and New York state.

For more information on Rensselaer’s Future Chips Constellation, visit: http://www.rpi.edu/futurechips/index.htm.

For more information on Rensselaer’s Smart Lighting Center, visit: smartlighting.rpi.edu.

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>