Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single molecules in a quantum movie

26.03.2012
The quantum physics of massive particles has intrigued physicists for more than 80 years, since it predicts that even complex particles can exhibit wave-like behaviour – in conflict with our everyday ideas of what is real or local.
An international team of scientists now succeeded in shooting a movie which shows the build-up of a matter-wave interference pattern from single dye molecules which is so large (up to 0.1 mm) that you can easily see it with a camera.

This visualizes the dualities of particle and wave, randomness and determinism, locality and delocalization in a particularly intuitive way. Seeing is believing: the movie by Thomas Juffmann et al. will be published on March 25 in "Nature Nanotechnology".

A quantum premiere with dye molecules as leading actors
Physicist Richard Feynman once claimed that interference effects caused by matter-waves contain the only mystery of quantum physics. Understanding and applying matter waves for new technologies is also at the heart of the research pursued by the Quantum Nanophysics team around Markus Arndt at the University of Vienna and the Vienna Center for Quantum Science and Technology.

These are selected frames of a movie showing the buildup of a quantum interference pattern from single phthalocyanine molecules. Credit: Image credits: University of Vienna/Juffmann et al. (Nature Nanotechnology 2012)

The scientists now premiered a movie which shows the build-up of a quantum interference pattern from stochastically arriving single phthalocyanine particles after these highly-fluorescent dye molecules traversed an ultra-thin nanograting. As soon as the molecules arrive on the screen the researchers take live images using a spatially resolving fluorescence microscope whose sensitivity is so high that each molecule can be imaged and located individually with an accuracy of about 10 nanometers. This is less than a thousandth of the diameter of a human hair and still less than 1/60 of the wavelength of the imaging light.

A breath of nothing

In these experiments van der Waals forces between the molecules and the gratings pose a particular challenge. These forces arise due to quantum fluctuations and strongly affect the observed interference pattern. In order to reduce the van der Waals interaction the scientists used gratings as thin as 10 nanometers (only about 50 silicon nitride layers). These ultra-thin gratings were manufactured by the nanotechnology team around Ori Cheshnovski at the Tel Aviv University who used a focused ion beam to cut the required slits into a free-standing membrane.

Tailored nanoparticles

Already in this study the experiments could be extended to phthalocyanine heavier derivatives which were tailor-made by Marcel Mayor and his group at the University of Basel. They represent the most massive molecules in quantum far-field diffraction so far.

Motivation and continuation

The newly developed and combined micro- and nanotechnologies for generating, diffracting and detecting molecular beams will be important for extending quantum interference experiments to more and more complex molecules but also for atom interferometry.

The experiments have a strongly didactical component: they reveal the single-particle character of complex quantum diffraction patterns on a macroscopic scale that is visible to the eye. You can see them emerge in real-time and they last for hours on the screen. The experiments thus render the wave-particle duality of quantum physics particularly tangible and conspicuous.

The experiments have a practical side, too. They allow to access molecular properties close to solid interfaces and they show a way towards future diffraction studies at atomically thin membranes.

After March 26th 2012, the movie will be accessible through Nature Nanotechnology and through http://www.quantumnano.at.

This project was supported by the Austrian FWF Z149-N16 (Wittgenstein), ESF/FWF/SNF MIME (I146) and the Swiss SNF in the NCCR "Nanoscale Science".

Publication in "Nature Nanotechnology" Real-time single-molecule imaging of quantum interference: Thomas Juffmann, Adriana Milic, Michael Müllneritsch, Peter Asenbaum, Alexander Tsukernik, Jens Tüxen, Marcel Mayor, Ori Cheshnovsky and Markus Arndt. Nature Nanotechnology (2012). DOI: 10.1038/NNANO.2012.34. Online Publication: 25.3.2012

Scientific contact
Prof. Markus Arndt (Quantum interference)
T 43-1-4277-512 10
markus.arndt@univie.ac.athttp://www.quantumnano.at
Prof. Ori Cheshnovski (Nanofabrication)
T 972-3-6408325
orich@chemsg1.tau.ac.il
http://www.tau.ac.il/chemistry/cheshn
Prof. Marcel Mayor (Chemical synthesis)
T 41-61-267-10-06
Marcel.Mayor@unibas.ch
http://www.chemie.unibas.ch/~mayor/index.html

Markus Arndt | EurekAlert!
Further information:
http://www.univie.ac.at

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>