Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulation of Chiral Edge States in a Quantum System

25.09.2015

Researchers in Florence and Innsbruck have simulated a physical phenomenon in an atomic quantum gas that can also be observed at the edge of some condensed matter systems: chiral currents. The scientists have published the experiment, which will open new doors for the study of exotic states in condensed matter, in the journal Science.

Condensed matter physics remains a field of study with many puzzles to solve. New studies have become possible due to advances in experimental quantum physics.


Theoretiker Marcello Dalmonte (Foto: Uni Innsbruck)

In particular, ultracold atoms in optical lattices and an environment that is fully tunable and controllable represent an ideal system for studying the physics of condensed matter problems. One of these phenomena can be observed in connection with the quantum Hall effect:

When certain materials are subjected to a strong magnetic field, the electrons cannot move in a singular circular direction at the edges anymore but repeatedly bounce against the edge, where they are reflected. This corresponds to skipping trajectories. As a macroscopic consequence so called chiral currents, which move in the opposite direction at the opposite edges, can be observed at the boundaries of such two-dimensional materials.

... more about:
»QUANTUM »Simulation »matter physics »synthetic

“You could compare it to a river where the fish swim towards the right on one bank and towards the left on the other bank,” explains theoretical physicist Marcello Dalmonte from the Institute for Theoretical Physics at the University of Innsbruck and a member of Peter Zoller’s research group at the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences.

Hopping atoms

Already ten years ago, Peter Zoller’s research team proposed a way to simulate chiral currents with neutral atoms. This idea combined with the synthetic dimension approach, put forward by the Barcelona group at ICFO, was picked up and implemented by physicists at the European Laboratory for Nonlinear Spectroscopy (LENS) in Florence collaborating with theoretical physicists in Innsbruck.

In their experiment, the scientists confined an ultracold gas of ytterbium atoms in an optical lattice generated by laser beams. As it is difficult to reproduce the structure of two-dimensional condensed matter systems, the physicists use a new approach: They used a one-dimensional chain of atoms and produced the second dimension synthetically. The dynamics along the synthetic dimension are generated by laser-induced hopping between two or three internal spin states.

“From a theoretical perspective this hopping into different internal spin states represents the same concept as the geometrical hopping of electrons at the edges of a condensed matter system,” explains Marcello Dalmonte. Together with Marie Rider and Peter Zoller, Marcello Dalmonte laid the theoretical groundwork for the experiment and suggested how to observe this phenomenon.

The observations published in Science show that the particles move mostly to the right at one edge and to the left on the other edge. “This behavior is very similar to chiral currents known in condensed matter physics,” says Dalmonte. This simulation of exotic effects opens up new ways for the researchers to study other new physical phenomena, for example, in connection with quantum Hall effects, the study of anyons in atomic systems. These exotic quasi particles are suggested to being suitable as the main building block for topological quantum computers.

The researchers are supported, among others, by the Austrian Science Fund (FWF), the European Research Council (ERC) and the European Union.

Publikation: Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, L. Fallani. Science, Vol. 349 no. 6255 pp. 1510-1513
doi: 10.1126/science.aaa8736

Contact:
Marcello Dalmonte
Institute for Theoretical Physics
Universtity of Innsbruck and
Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences
Tel.: +43 512 507 4792
E-Mail: marcello.dalmonte@uibk.ac.at

Dr. Christian Flatz
Public Relations
Tel.: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://www.uibk.ac.at/th-physik/qo/ - Quantum Optics Theory Group
http://www.uibk.ac.at/th-physik/ - Institute for Theoretical Physics, Universtity of Innsbruck
http://iqoqi.at/ - Institute for Quantum Optics and Quantum Information
http://Austrian Academy of Sciences
http://www.lens.unifi.it/ - European Laboratory for Nonlinear Spectroscopy (LENS)

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.uibk.ac.at

Further reports about: QUANTUM Simulation matter physics synthetic

More articles from Physics and Astronomy:

nachricht Manipulating Electron Spins Without Loss of Information
19.07.2017 | Universität Basel

nachricht Evidence of the Higgs Particle’s Decay in Quarks
19.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Nesting aids make agricultural fields attractive for bees

20.07.2017 | Life Sciences

World first: Massive thrombosis removed during early pregnancy

20.07.2017 | Health and Medicine

The Kitchen Sponge – Breeding Ground for Germs

20.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>